PANTALLAS Y PRIMERA INFANCIA

Aportes desde el campo de la psicología del desarrollo simbólico

Mariana Sartori

COLECCIÓN UAI – INVESTIGACIÓN
PANTALLAS Y PRIMERA INFANCIA
Mariana Sartori

Pantallas y primera infancia

Aportes desde el campo de la psicología del desarrollo simbólico

Colección UAI – Investigación
Autoridades

Rector Emérito: Dr. Edgardo Néstor De Vincenzi
Rector: Dr. Rodolfo De Vincenzi
Vice-Rectora Académica: Dra. Ariana De Vincenzi
Vice-Rector de Gestión y Evaluación:
Dr. Marcelo De Vincenzi
Vice-Rector de Investigación: Dr. Mario Lattuada
Vice-Rector de Extensión Universitaria:
Dr. Fernando Grosso
Vice-Rector de Administración: Dr. Alfredo Fernández
Decano de la Facultad de Psicología y Relaciones Humanas: Lic. Fernando Adrover
Comité editorial

Lic. Juan Fernando ADROVER
Arq. Carlos BOZZOLI
Mg. Osvaldo BARSKY
Dr. Marcos CÓRDOBA
Mg. Roberto CHERJOVSKY
Dra. Ariana DE VINCENZI
Dr. Roberto FERNÁNDEZ
Dr. Fernando GROSSO
Dr. Mario LATTUADA
Dra. Claudia PONS
Dr. Alejandro BOTBOL

Los contenidos de los libros de esta colección cuentan con evaluación académica previa a su publicación.
La Universidad Abierta Interamericana ha planteado desde su fundación en el año 1995 una filosofía institucional en la que la enseñanza de nivel superior se encuentra integrada estrechamente con actividades de extensión y compromiso con la comunidad, y con la generación de conocimientos que contribuyan al desarrollo de la sociedad, en un marco de apertura y pluralismo de ideas.

En este escenario, la Universidad ha decidido emprender junto a la editorial Teseo una política de publicación de libros con el fin de promover la difusión de los resultados de investigación de los trabajos realizados por sus docentes e investigadores y, a través de ellos, contribuir al debate académico y al tratamiento de problemas relevantes y actuales.

La colección investigación TESEO – UAI abarca las distintas áreas del conocimiento, acorde a la diversidad de carreras de grado y posgrado dictadas por la institución académica en sus diferentes sedes territoriales y a partir de sus líneas estratégicas de investigación, que se extiende desde las ciencias médicas y de la salud, pasando por la tecnología informática, hasta las ciencias sociales y humanidades.

El modelo o formato de publicación y difusión elegido para esta colección merece ser destacado por posibilitar un acceso universal a sus contenidos. Además de la modalidad tradicional impresa comercializada en librerías seleccionadas y por nuevos sistemas globales de impresión y envío pago por demanda en distintos continentes, la UAI adhiere a la red internacional de acceso abierto para el conocimiento científico y a lo dispuesto por la Ley n°: 26.899 sobre Repositorios digitales.
institucionales de acceso abierto en ciencia y tecnología, sancionada por el Honorable Congreso de la Nación Argentina el 13 de noviembre de 2013, poniendo a disposición del público en forma libre y gratuita la versión digital de sus producciones en el sitio web de la Universidad.

Con esta iniciativa la Universidad Abierta Interamericana ratifica su compromiso con una educación superior que busca en forma constante mejorar su calidad y contribuir al desarrollo de la comunidad nacional e internacional en la que se encuentra inserta.

Dra. Ariadna Guaglianone
Secretaría de Investigación
Universidad Abierta Interamericana
A mi abuela, Adelita, por invitarme a seguir jugando... siempre.
Índice

Reconocimiento .. 17
Agradecimientos .. 19
Prólogo .. 21
 Ana Faas

Introducción .. 25
Estructura del libro... 27

1. Los símbolos .. 29
 Perspectivas y definiciones clásicas... 30
 ¿Qué son las representaciones externas? 39
 Principales características de las representaciones externas . 41
 Relevancia cultural, cognitiva y educativa de las representaciones externas .. 44

2. Los objetos simbólicos .. 47
 Hacia una definición de los objetos simbólicos...................... 48
 Un modelo teórico para el estudio del desarrollo de la comprensión y uso de objetos simbólicos 49

3. Las imágenes digitales e interactivas 65
 Las imágenes como objetos simbólicos 66
 Las representaciones vehiculizadas por dispositivos tecnológicos.. 69
 Propiedades de las TIC como sistema de representación externa .. 71
 Primera infancia y pantallas .. 77

4. Consideraciones metodológicas .. 85
 Conceptualizaciones generales.. 85
 Métodos y técnicas de recolección de datos 89
 Las tareas empleadas ... 91
 Participantes ... 92
Estrategia general de recolección y análisis de datos 94

5. La comprensión simbólica infantil de una imagen digital, 3D e interactiva ... 99
 Presentación ... 99
 Estudio 1 .. 102
 Resultados y discusión ... 108
 Estudio 2 .. 110
 Resultados y discusión ... 112
 Estudio 2A ... 114
 Resultados y discusión ... 115
 Estudio 3 .. 117
 Resultados y discusión ... 119
 Discusión general .. 121

6. Interacción entre adultos y niños con un juego digital e interactivo presentado en una tablet .. 127
 Presentación ... 127
 Estudio 4 .. 129
 Resultados .. 137
 Discusión ... 151

7. Tecnologías en los hogares .. 155
 Presentación ... 155
 Estudio 5 .. 159
 Resultados .. 161
 Discusión ... 172
 Consideraciones finales .. 177
 Bibliografía ... 187
Reconocimiento

El presente libro expone los principales aportes de la tesis para la obtención del título de Doctora en Psicología por la Universidad Nacional de Córdoba. La investigación fue realizada en el marco de una beca de iniciación de doctorado otorgada por la Agencia Nacional de Promoción Científica y Tecnológica (2016-2019) y de una beca de finalización de doctorado otorgada por el Consejo Nacional de Investigaciones Científicas y Técnicas (2019-2021), con lugar de trabajo en el Instituto Rosario de Investigaciones en Ciencias de la Educación (IRICE), perteneciente al CONICET.
Agradecimientos

A mi directora de tesis, Olga Peralta, por brindarme su confianza, por su ejemplo de profesionalismo y capacidad de trabajo inagotable, por su acompañamiento y guía en este proceso de aprendizaje.

A las directoras, maestras, padres y madres de las instituciones educativas donde realicé el trabajo de campo, por su interés, entusiasmo y enorme confianza en mi proyecto. Agradezco especialmente a los niños, niñas y adultos que participaron en esta investigación. Sin sus ganas de jugar y su colaboración desinteresada este trabajo no hubiese sido posible.

A mis compañeras, María Celeste Baiocci, Romina Vivaldi, Jimena Rodríguez, Belén Gariboldi y Florencia Mareovich, por el cariño, complicidad y compañerismo construidos en estos años de trabajo. Agradezco especialmente a Daniela Jauck, por su apoyo y sostén en los momentos en que lo necesité.

A Mariano Castellaro y Nadia Peralta, por sus valiosos aportes teóricos y metodológicos, pero sobre todo por su predisposición cálida, paciente y generosa frente a mis constantes inquietudes.

A mis compañeras y compañeros de la cátedra Metodologías de la Investigación en Psicología de la Facultad de Psicología (UNR), por brindarme el espacio para seguir aprendiendo y desarrollar mi pasión por la docencia. Agradezco especialmente a Laura París, quien me transmitió mucho más de lo que imagina.

A mi familia, en especial a mi madre, por transmitirme los valores del trabajo, educación, honestidad y humildad, por enseñarme a poner el corazón en cada cosa que hago.
A mi padre, por transmitirme mis grandes pasiones. A mis tías, Juana y María Antonia, por incentivar desde niña mi curiosidad por la lectura y la escritura. A mi abuela, Adelita, por quien las palabras nunca son suficientes.

A mis amigas y amigos del alma, por su amor y apoyo incondicional durante las vicisitudes de este proceso.

¡GRACIAS!

Sin ustedes mi trabajo no hubiese sido posible.
Este libro se desprende de una tesis doctoral de la que tuve el honor de formar parte como miembro del tribunal evaluador. La tesis, realizada en el marco de becas de la Agencia Nacional de Promoción Científica y Tecnológica y del Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), obtenidas desde los años 2016 a 2021, trata sobre cómo los niños pequeños acceden a la comprensión simbólica a través de imágenes digitales tridimensionales e interactivas, como las que puede presentar una tablet.

El libro está organizado en siete capítulos. En los tres primeros se presenta la teoría y los antecedentes en que se sustenta la investigación. En los restantes se exponen los trabajos de investigación realizados y sus consideraciones finales.

Si leemos atentamente el marco teórico, la autora ahonda en las diferentes conceptualizaciones acerca del símbolo y el rol del contexto sociocultural en la formación simbólica analizando diferentes modelos en torno a la comprensión y uso de objetos simbólicos como la instrucción, la manipulación y la bi- o tridimensionalidad, etc., e identifica los factores intervinientes en este proceso. Asimismo, analiza en detalle diferentes dispositivos tecnológicos que atraviesan nuestras infancias y las TIC como sistema de representación externa, planteando debates actuales sobre los efectos de las pantallas en el aprendizaje y desarrollo infantil.
Cuando nos adentramos en el libro, la autora plantea una serie de trabajos empíricos para responder a las preguntas: ¿los niños pequeños comprenden que las imágenes proyectadas por las pantallas están en lugar de algo que puede existir en la realidad? ¿A qué edad? La manipulación que implica la interactividad de la pantalla, ¿favorece u obstruye el acceso a la comprensión simbólica de las imágenes proyectadas? ¿Qué papel cumple la instrucción del adulto en el acceso a la comprensión simbólica de estas imágenes? ¿Cómo es la interacción entre adultos y niños cuando una tarea es presentada en una imagen digital e interactiva? ¿Qué hábitos de uso de dispositivos tecnológicos tienen los adultos y niños en sus hogares? ¿Qué percepciones tienen los adultos sobre dicho uso?

Se realizan así cinco estudios, en los cuales la autora va respondiendo a estas preguntas de investigación.

En el estudio 1 se compara evolutivamente el acceso a la comprensión simbólica de una imagen digital, 3D e interactiva presentada en una tablet; los niños recibían la instrucción de la investigadora pero no manipulaban el dispositivo. En el estudio 2, la comparación por edad (30 vs. 36 meses) se realiza con instrucción del adulto pero además permitiendo la manipulación previa de la imagen en el dispositivo por parte de los niños. Se desprende de aquí el Estudio 2A, donde se evalúa el impacto de la manipulación previa de la imagen a los 30 meses, manteniendo la instrucción. En el estudio 3 se plantea el impacto, tanto de la instrucción adulta como de la manipulación previa de la imagen, en el acceso a la comprensión simbólica de los niños de 36 meses. Y es en el estudio 4 donde se explora la interacción adultos-niños de 24 a 36 meses mediante un juego que implica la solución de un problema, como el armado de un rompecabezas presentado en una tablet. Finalmente, luego de estos experimentos, en un
quinto y último estudio se aplica un cuestionario estan-
darizado para indagar la tenencia, hábitos y percepción
del uso de dispositivos tecnológicos en padres, madres o
adultos responsables.
El lector se encontrará aquí con un trabajo de altísimo
rigor metodológico, cuyas preguntas convalidan y extien-
den una línea de investigación consolidada desde hace ya
más de dos décadas por el equipo que lo integra.
En su conjunto, los resultados encontrados confirman
las hipótesis de trabajo, lo que pone en evidencia la rele-
vancia educativa para el desarrollo infantil temprano de los
dispositivos tecnológicos y su importancia en la compren-
sión simbólica. Además, considerando la pandemia por
COVID-19 que implicó que los dispositivos tecnológicos
sean el medio privilegiado de socialización y aprendizaje,
el tema aquí investigado adquiere especial interés a la luz
del contexto actual.
La interacción adultos-niños pequeños en un mundo
mediado por tecnologías se vuelve hoy un tema funda-
mental. Más allá de posturas detractoras o promotoras del
uso de este tipo de herramientas en los aprendizajes infant-
tiles, hoy sin duda el niño pequeño ha incorporado a su
vida todo tipo de dispositivos tecnológicos que median
su conocimiento sobre el mundo que le rodea. El trabajo
alerta sobre el hecho de que los dispositivos tecnológicos
constituyen artefactos de enorme relevancia social y edu-
cativa. La peculiaridad de las pantallas táctiles, dada por
la interactividad y tridimensionalidad de la imagen y del
soporte en que se presenta, impacta en la comprensión y
uso infantil como medio simbólico. Debemos, entonces,
considerar cómo el acceso a los procesos simbólicos que
ocurren en la primera infancia se acompaña de este tipo
de dispositivos. Conocer las maneras de potenciar estos
aprendizajes y procesos mediante el uso de tecnologías
y analizar el rol que los adultos cuidadores tienen en las interacciones tempranas con los niños pequeños es una cuestión fundamental que el trabajo que aquí se presenta discute con elegancia y precisión.

Invito por lo tanto a su lectura, que no solo nos ayudará a ampliar nuestro conocimiento sobre el acceso al mundo simbólico del niño pequeño, sino que también nos permitirá pensar en el rol que las nuevas tecnologías asumen en la mediación de aprendizajes y en la promoción del desarrollo cognitivo infantil.

Noviembre de 2021
Introducción

La capacidad de crear y comprender símbolos es una competencia genuinamente humana. El lenguaje oral y escrito, los números, carteles, mapas, gestos, señales de tránsito, fotos y las múltiples representaciones proyectadas por dispositivos tecnológicos son solo algunos de los tantísimos ejemplos de símbolos que usamos cotidianamente. Desde el nacimiento, estamos sumergidos en un complejo entramado de símbolos y un aspecto central del desarrollo es la progresiva apropiación de las diversas herramientas simbólicas presentes en la cultura, lo que forma parte del proceso de alfabetización del sujeto.

Dentro de la gran diversidad de símbolos, los objetos simbólicos se caracterizan por tener una naturaleza doble: son objetos físicos y simultáneamente representaciones de otra cosa. Por ejemplo, un mapa es un trozo de papel y a la vez representa un espacio. Si pensamos en la vida cotidiana de un niño, en su entorno familiar y extrafamiliar, resulta evidente que este tipo de objetos se emplea de manera constante. Podemos pensar en el uso de fotos para evocar recuerdos, de libros ilustrados para enseñar palabras y de muñecos para enseñar partes del cuerpo, entre tantos otros. Así, estas herramientas median las interacciones que los niños entablan con pares y adultos, y con frecuencia son empleadas como recursos didácticos. Ahora bien, la mera presencia de estas herramientas en el entorno del niño no significa que su apropiación sea simple o directa:

1 En el presente escrito se asume la importancia de la distinción lingüística de género. Sin embargo, a los fines expositivos y para facilitar la lectura, en adelante referiremos a niños y adultos.
se trata de un proceso complejo que tiene lugar en el seno de las interacciones con personas significativas de su entorno, en que se entrelazan aspectos evolutivos, culturales y educativos.

Considerando la abrumadora diversidad de objetos simbólicos presentes en la cultura, en la actualidad cobran especial relevancia las imágenes digitales e interactivas presentadas en dispositivos tecnológicos táctiles, como tablets o smartphones, con los que habitualmente los niños interactúan. Este tipo de imágenes tiene una característica peculiar que las distingue de otros objetos simbólicos: son interactivas. Es decir, responden instantáneamente y en función de las intervenciones del usuario. Por tanto, no es posible extender a ellas resultados referidos a la comprensión y uso infantil de otros objetos simbólicos, como imágenes impresas u objetos tridimensionales.

A pesar de las fuertes controversias que ha generado el uso de pantallas y de las clásicas recomendaciones sobre limitar su empleo en etapas iniciales del desarrollo, su implementación fue un hecho. En el mercado son numerosas las aplicaciones digitales e interactivas publicitadas para que niños jueguen y aprendan. En la Argentina, diversas políticas educativas desde hace años promueven el uso de dispositivos tecnológicos como herramientas para el aprendizaje, incluso desde el nivel inicial. Sin embargo, a edades tempranas, no se cuenta con resultados concluyentes sobre diversos aspectos relativos a la comprensión simbólica y al uso de las imágenes proyectadas por estos dispositivos. El hecho de que los niños pequeños manipulen estos dispositivos no es sinónimo de que comprendan y puedan aprender de las imágenes proyectadas. Un requisito para el aprendizaje es que los niños comprendan simbólicamente sus imágenes.
En este marco, este libro sintetiza los aportes de una investigación cuyo objetivo general fue investigar el acceso a la comprensión simbólica y el uso de una imagen digital, tridimensional (3D) e interactiva, presentada en una *tablet*, por parte de niños pequeños. Este libro retoma las controversias actuales en torno al uso, comprensión e interacción infantil con estas herramientas, de modo que constituye un aporte desde la psicología del desarrollo simbólico. Cabe destacar además que desde el año 2020 la pandemia por COVID-19 aumentó exponencialmente el uso de tecnologías, por lo que este trabajo no solo reviste interés académico, sino que contribuye al debate en torno a la implementación de dispositivos tecnológicos en contextos educativos, tanto formales como informales.

Estructura del libro

El presente libro se organiza en siete capítulos. En los primeros tres, se expone la teoría y los antecedentes en que se sustenta la investigación. El capítulo 1 aborda de manera general la categoría de símbolos y las diferentes posiciones sobre el rol del contexto sociocultural en el desarrollo simbólico infantil. Se analizan las representaciones externas, sus características y relevancia como herramientas culturales, cognitivas y educativas. En el capítulo 2 se presenta un modelo teórico para el estudio del desarrollo de la comprensión y uso de objetos simbólicos, desde el cual se describen los factores intervinientes en este proceso y se presentan los antecedentes directos de este libro. En el capítulo 3 se definen las imágenes digitales e interactivas como un caso particular de objeto simbólico. Se describen los debates e interrogantes actuales en torno a su comprensión simbólica, a la interacción entre adultos
y niños cuando una actividad es mediatizada por estas herramientas y al uso de dispositivos tecnológicos en la infancia, y finaliza con las preguntas que dieron origen al presente trabajo.

En el capítulo 4 se expone el enfoque metodológico adoptado. Se comienza por definiciones generales sobre metodología, método, técnicas y diseño para dar lugar al conjunto de decisiones teórico-metodológicas tomadas en este trabajo en torno a los participantes, procedimientos, técnicas de recolección y análisis de la información. En los capítulos 5, 6 y 7 se presentan los estudios realizados. En el capítulo 5 se indaga el acceso a la comprensión simbólica de una imagen digital, tridimensional (3D) e interactiva presentada en una tablet por parte de niños pequeños. Particularmente, se estudia el impacto de la edad del niño, la instrucción proporcionada por el adulto y la manipulación previa de la imagen por parte del niño en el acceso a su comprensión simbólica. En el capítulo 6 se describe y analiza la interacción entre adultos y niños con un juego digital e interactivo, presentado en una tablet, que implica la solución de un problema. Asimismo, indagamos la tenencia y los hábitos de uso de tecnologías en los hogares de los participantes y analizamos, desde una perspectiva multidimensional, la variación de la interacción en función de la experiencia previa con estas herramientas. El capítulo 7 indaga la tenencia, los hábitos y las percepciones de uso de dispositivos tecnológicos en padres, madres o adultos responsables de niños pequeños.

A modo de cierre, las consideraciones finales integran los resultados de los estudios realizados. Se proponen lineamientos para futuras investigaciones y se reflexiona sobre sus implicancias educativas.
Los símbolos

Suena el despertador, me desperezó y mientras preparo el desayuno prendo la televisión para ver el pronóstico, al tiempo que reviso en mi celular si recibí un nuevo mensaje. Mientras tomo mi café, reviso la agenda y observo en la televisión una pareja de tango que evoca con ternura la imagen de mis abuelos. El llanto de mi vecinito Felipe, de cuatro meses, interrumpe mis recuerdos y sin mediar pensamiento me dice que tengo que comprar comida. Llegó el primer mail de la mañana. Un nuevo día ha comenzado.

Un breve fragmento de la vida cotidiana de cualquier persona basta para ilustrar que el mundo humano es esencialmente simbólico. El lenguaje oral y escrito, los números, señales de tránsito, mapas, fotografías, relojes, agendas, calendarios y las múltiples representaciones vehiculizadas por las tecnologías de la información y comunicación (TIC) son solo algunos de los tantísimos ejemplos de símbolos que utilizamos cotidiana y permanentemente. Desde el nacimiento, estamos inmersos en un complejo entramado de símbolos, por lo que un aspecto central del desarrollo es la progresiva apropiación de las diversas herramientas simbólicas presentes en la cultura.

Ahora bien, ¿qué es un símbolo? ¿Cuáles son las características que los definen? Estas preguntas, en apariencia sencillas, no tienen una respuesta unívoca. Entre semiólogos, lingüistas, antropólogos y psicólogos se encuentran diversas definiciones y criterios de clasificaci-
ción de los símbolos, como también diferentes posiciones sobre el desarrollo de su comprensión y el rol del contexto sociocultural en este proceso. En este capítulo, primero se realiza una breve referencia a estas diversas posiciones para dar lugar a la que enmarca este trabajo; luego, se define el concepto de representaciones externas, sus principales características y su relevancia como herramientas culturales, cognitivas y educativas.

Perspectivas y definiciones clásicas

Desde un enfoque clásico, las obras de Ferdinand de Saussure y Charles Peirce sentaron las bases para el estudio de los signos en la modernidad, y constituyen una referencia ineludible para cualquier estudio semiótico. Sus conceptualizaciones ejercieron gran influencia y fueron objeto de modificaciones y críticas en el transcurso del siglo XX (Vitale, 2020). Saussure (1916), particularmente, propuso una estructura binaria del signo lingüístico, diferenciando significante y significado. El primero alude al aspecto material y el segundo, al concepto. Ninguno de estos planos tomados aisladamente conforma un signo, ya que existe una relación de interdependencia entre significante y significado. Si bien un estudio pormenorizado de la obra del autor excede el propósito de este escrito, destacamos la fecundidad de este modelo en el posterior estudio de los diversos sistemas simbólicos. Saussure (1916) enfatizó la arbitrariedad del signo, lo que significa que la unión entre significante y significado es establecida pura y exclusivamente por convención social, es decir, por hábitos colectivos. Así, el concepto de casa no está ligado por alguna relación intrínseca a la palabra “casa”, ya que podría estar representado por cualquier otra secuencia de sonidos, como lo prueban
las diferencias entre lenguas. Ahora bien, *arbitrario* no significa que el significante dependa de la libre elección de la persona que lo emplea. El significante es arbitrario respecto al significado, con el que no mantiene un lazo natural, mientras que los símbolos, a diferencia de los signos, nunca son del todo arbitrarios, dado que siempre hay algo de natural en el vínculo entre significante y significado. Por ejemplo, una balanza como símbolo de la justicia no podría ser reemplazado por cualquier otro, como un auto o una flor, dado que entre el plano del significante (la balanza) y el plano del significado (la justicia) existe una relación figurativa (Vitale, 2020). Al respecto, Eco (1973) estableció que *arbitrariedad* no es sinónimo de convencionalidad. Para el autor, todos los signos son convencionales, puesto que hay una relación instituida entre un significante y un significado sobre la base de una convención social, pero algunos son arbitrarios y otros no.

Peirce (1932), uno de los máximos representantes del pragmatismo estadounidense, señaló la importancia de los signos para el pensamiento humano. Buscó fundamentar una teoría de los signos como marco para una teoría del conocimiento. Para este autor, la semiosis como proceso de conocimiento de la realidad es un proceso tríadico de inferencia, en el que un objeto o referente es representado por una marca, forma o representamen (cualidad material por la que percibimos el signo) para un interpretante o quien usa el signo, cuyo significado es creado en su mente. Por ejemplo, si estoy en una ciudad desconocida y salgo a la calle en busca de una farmacia (objeto o referente) puedo buscar cruces verdes (representamen) que me significan (interpretante) que en ese lugar hay una.

A diferencia de Saussure, Pierce propuso una concepción tríadica del signo, constituido a partir del interjuego de estos tres elementos (Vitale, 2020). Adoptando como
criterio de clasificación de los signos la posible relación entre representamen y objeto, estableció una diferenciación entre íconos, índices y símbolos. El ícono mantiene una relación de semejanza o analogía con el objeto. Se caracteriza por su similitud morfológica, como es el caso de los dibujos figurativos, las maquetas y las onomatopeyas. El índice tiene una vinculación directa con su creador, y existe una relación de causa-efecto entre el signo y aquello que representa; por tanto, existe una relación de contigüidad con el referente, no de semejanza. Por ejemplo, un reloj indica qué hora es, una huella nos indica que alguien caminó antes que nosotros por un mismo camino y el humo que observo en las islas del Paraná me indica que las continúan prendiendo fuego. Contrariamente a Saussure, el término símbolo se reserva para aquellas entidades que tienen una relación arbitraria con el objeto, cuyo uso y significado ha sido establecido por convención social, hábito o ley. Ejemplos de símbolos son el lenguaje oral y escrito, la lengua de señas, la notación numérica y el sistema braille, entre tantos otros.

Desde la psicología genética, las clásicas definiciones de Piaget (1946; Piaget e Inhelder, 1966) revelan que en su concepción el acento también estuvo puesto en el grado de arbitrariedad del signo respecto de aquello que representa y en la diferenciación y coordinación entre significantes y significados, por lo que resulta clara la influencia de Saussure en este punto. Así, para definir a una entidad como simbólica, es tan necesario que se evoque algo ausente como la diferenciación entre significante y significado. Para Piaget, el índice también refiere a una marca ligada a su referente, pero no le otorga la naturaleza semiótica que le otorga Peirce, precisamente por no haber una clara diferenciación entre significante y significado. De manera opuesta a Peirce, y análoga a Saussure, Piaget
empleó el término *símbolo* para referirse a aquellas entidades que mantienen una relación de semejanza con el referente, mientras que los *signos* se caracterizan por tener una relación totalmente arbitraria.

La *función semiótica* consiste entonces en la capacidad de representar algo, un significado cualquiera (objeto, acontecimiento, etc.), por medio de un significante diferenciado (imagen, gesto simbólico, lenguaje, etc.) que solo sirva para esa representación (Piaget, 1946). Se trata de una función generadora de representación, de evocación de un objeto ausente. Esta función sería de carácter general, común a las diversas manifestaciones simbólicas. Emerge hacia los 18-24 meses de vida, y marca el paso o *puente* entre el estadio sensorio-motriz y el preoperatorio. La imitación diferida, el juego simbólico o de ficción, el dibujo y el empleo de signos lingüísticos son diversas manifestaciones que implican una capacidad de representación por parte del niño. Si bien algunas de ellas pueden comenzar en el período sensorio-motor, no alcanzan su máxima expresión hasta el período preoperatorio. Así, el desarrollo entre los 2 y los 7 años se caracteriza por el progreso de esta función (Piaget, 1964). Si bien desde la psicología genética no se desconoce la importancia del medio social en que se desarrolla el niño, no se le otorga un papel fundante y constitutivo de los procesos psíquicos: “los factores sociales no explican nada por sí mismos, por mucho que su intervención sea necesaria en el desarrollo de la razón” (Piaget, 1946, p.12). Para Piaget, la asimilación y la acomodación en la búsqueda de equilibrio u homeostasis, como mecanismos de la inteligencia, son capacidades innatas, con un valor adaptativo y desplegadas en los diferentes estadios del desarrollo. El desarrollo consiste en una construcción de estructuras intelectuales ordenadas que regulan los intercambios del sujeto con su medio. Este orden
tiene cierto carácter universal y responde al principio de mayor equilibración. Desde esta perspectiva, la función simbólica en un comienzo es un mecanismo individual, cuya existencia y desarrollo constituye un requisito para la posterior adquisición de significaciones colectivas que, como el lenguaje, sí requieren de la interacción social.

Desde la perspectiva sociocultural, Vygotsky (1991a) se refirió a los símbolos de manera más general, enfatizando su carácter instrumental como herramientas culturales que median la actividad psicológica. Diferenció entre símbolos de primer orden y símbolos de segundo orden. Mientras que los primeros representan directamente al referente (como un dibujo figurativo o una fotografía), en los segundos el símbolo representa a otro símbolo. Por ejemplo, la escritura representa la lengua hablada. Por tanto, los símbolos de segundo orden son de naturaleza más abstracta, compleja, y su comprensión se desarrolla en un momento posterior a la de los símbolos de primer orden (Teubal y Guberman, 2014). Más allá de esta diferenciación, el núcleo de la estructura teórica de Vygotsky es la tesis de que los procesos psicológicos superiores tienen su origen en procesos sociales y pueden entenderse solo mediante la comprensión de instrumentos y signos que actúan como mediadores. Así, la ley genética general del desarrollo cultural y la zona de desarrollo próximo son conceptos centrales que junto a su propuesta metodológica, el método genético experimental, constituyen aspectos nodales de su obra (Wertsch, 1988).

La influencia del materialismo dialéctico es evidente en la obra de Vygotsky. Puede observarse en su compromiso por desarrollar formas concretas por las que la psicología pueda hacer frente a problemas prácticos, o en su crítica a la psicología de la época, caracterizada por la escisión
entre una concepción dualista o biologicista de la naturaleza humana. En forma más específica, puede leerse en su concepción del psiquismo y desarrollo humano, y en el método construido para estudiarlo. Para Vygotsky (1991a), la naturaleza psíquica humana representa el conjunto de relaciones sociales interiorizadas, que se han transformado en funciones para el sujeto y en formas de su estructura individual. En sus propias palabras: “A diferencia de Piaget, suponemos que el desarrollo no se orienta hacia la socialización, sino a convertir las relaciones sociales en funciones psíquicas” (p. 104). Así, las funciones psicológicas superiores son relaciones sociales internalizadas. Al respecto, Wertsch (1988; Wertsch y Stone, 1985) expresó que la interiorización no se trata de una mera transferencia o copia de la realidad externa a un plano interior. Las relaciones sociales subyacen a todas las funciones superiores, pero la internalización implica una transformación genética, que cambia su estructura y funciones, y consiste en un proceso de control o dominio de las formas semióticas externas. En este sentido, Tomasello (1999) se refiere a la interiorización como un proceso de aprendizaje en situaciones intersubjetivas, por el que usamos medios simbólicos que otras personas emplean con la finalidad de compartir recíprocamente su atención. Así, por ejemplo, cuando un niño en interacción con personas significativas de su entorno aprende un nuevo signo lingüístico, este aprendizaje le permite internalizar la intención comunicativa y el punto de vista de sus interlocutores. Cabe aclarar que más allá de esta diferencia fundamental respecto al papel otorgado a los factores sociales en el desarrollo, Vygotsky, al igual que Piaget, concibió el desarrollo simbólico como un proceso general. Es decir, para Vygotsky la mediación semiótica opera como un mecanismo general para toda clase de signos.
En línea con Vygotsky, Cole (1984; 1999) propone la noción de *artefacto cultural* en un intento de superar el dualismo mente-sociedad en el estudio de la naturaleza humana. Los sujetos y objetos no están conectados directamente, sino a través de artefactos culturales que tienen tanto una dimensión material como ideacional o conceptual. Estos artefactos son aspectos del mundo material que se han visto modificados en la historia por la acción humana dirigida a metas. El autor toma el concepto de actividad de Leontiev (1981) como unidad de análisis de base para una teoría cultural. Desde esta perspectiva, la psicología debe ocuparse de la actividad de las personas concretas tal como tiene lugar, entendiendo la actividad humana individual como un sistema dentro del sistema de relaciones sociales. Así, se enfatiza una perspectiva ecológica en la comprensión del pensamiento y la acción humana. El acento está puesto en las acciones mediadas en las prácticas cotidianas. Los artefactos y acciones están entretejidos entre sí con el mundo social de los seres humanos.

También Bruner (1990; 1996) concibió a la cultura como formadora de los procesos psíquicos. Desde esta perspectiva, no hablamos de una mente natural que se limita a adquirir productos culturales. La cultura no es una capa superpuesta a la naturaleza humana determinada biológicamente, sino que es parte constitutiva de esta. El aumento del tamaño del cerebro, la bipedestación y la liberación de las manos no son más que pasos morfológicos en la evolución de la especie, que no tendrían demasiada importancia si no fuera por la emergencia de sistemas simbólicos compartidos. Por tanto, la cultura impone una discontinuidad entre los seres humanos y el resto del reino animal. Las acciones humanas son culturales y su significado debe buscarse dentro de la cultura. De allí, el énfasis en el estudio de la acción situada. De manera análoga a
los *artefactos* definidos por Cole, Bruner habló de *prótesis* para referirse a aquellas creaciones culturales, tangibles e inmateriales que permiten superar restricciones de origen biológico.

La capacidad de crear e interpretar símbolos, junto a la capacidad de internalizar artefactos y prácticas culturales desarrolladas a lo largo de la historia, constituye una característica esencial de los seres humanos. Estas características nos distinguen del resto de las especies, incluso de los chimpancés, que aunque muy cercanos en la filogenia, al compartir aproximadamente el 99% del material genético, no pueden representar el mundo externamente ni transmitirlo culturalmente.

En este punto resulta interesante la perspectiva de Tomasello (1999; 2013; Tomasello *et al*., 1993), interesado en explicar el enigma sobre el rápido desarrollo cultural y cognitivo específicamente humano que tuvo lugar en tan poco tiempo en la evolución de las especies. Según el autor, la capacidad exclusiva de la especie –surgida en la filogenia y de enormes consecuencias cognitivas y culturales– es la capacidad de comprender que los demás son agentes intencionales y mentales, semejantes a uno. Esta capacidad posibilitó procesos de sociogénesis y aprendizaje cultural, que dieron lugar a formas exclusivamente humanas de herencia cultural. La sociogénesis refiere al proceso por el que múltiples individuos crean en colaboración prácticas y artefactos culturales que acumulan modificaciones a lo largo de la historia. El aprendizaje cultural –por imitación, instrucción y colaboración– también está subordinado a nuestra capacidad de identificarnos con los demás, que permite ponernos en el lugar mental de otras personas y aprender no solo *del* otro, sino *a través* del otro. Así, para que un niño comprenda un símbolo, práctica o artefacto cultural es necesario que comprenda la finalidad
o intención con que otro ser humano lo está empleando. En síntesis, el aprendizaje cultural permite tanto la invención creativa de artefactos y prácticas como su transmisión social, por la que estas creaciones, sus intenciones y perspectivas son internalizadas por los niños en desarrollo.

En este trabajo consideramos el término *símbolo* de manera amplia. En este sentido acordamos con DeLoache (2004), quien los definió como “aquellas entidades que alguien propone para representar algo diferente” (p. 66). Esta breve definición condensa mucho de lo expuesto hasta el momento. En ella confluyen las clásicas definiciones de Goodman (1976), por la que cualquier cosa podría virtualmente constituirse en un símbolo, y la de Werner y Kaplan (1963), quienes enfatizan la dimensión intencional del acto denotativo. Desde esta perspectiva, el elemento clave para definir a una entidad como simbólica no es su arbitrariedad o su similitud perceptual respecto de aquello que representa: lo que determina que una entidad sea simbólica es la intención humana. La intención es condición necesaria y suficiente para establecer una relación simbólica. Nada es inherente un símbolo, solo lo es como resultado de que alguien lo use para denotar o referir otra cosa y se comprenda su intencionalidad en el contexto comunicativo en que se emplea. Por tanto, además de su dimensión representativa, los símbolos tienen una dimensión comunicativa e intencional (Callaghan, 2005; Tomasello, 1999).

En suma, los símbolos tienen un origen y un proceso de aprendizaje complejo y eminentemente social. En la ontogenia, su apropiación implica una reconstrucción activa por parte del niño en interacción con su entorno. Los símbolos como mediadores y herramientas permiten comunicarnos con los demás y con nosotros mismos, representar la realidad, realizar inferencias, organizar
nuestro comportamiento y ampliar nuestras posibilidades de aprendizaje, ya que posibilitan desligarnos del aquí y ahora, de lo concreto, y operar sobre realidades ausentes e incluso inexistentes. De hecho, la mayor parte de nuestro conocimiento no proviene de la experiencia directa con el mundo, sino que está mediada por diversos sistemas simbólicos. Por tanto, la cultura y la mente humana están mediatizadas y se sustentan en herramientas simbólicas.

¿Qué son las representaciones externas?

Si algo tienen en común símbolos tan diferentes como la notación matemática, la escritura, una partitura musical, una foto, un calendario o un mapa que observo desde mi smartphone es que son representaciones externas. A pesar de su relevancia, solo en las últimas décadas la psicología se abocó al estudio de la naturaleza específica de las representaciones externas y en las consecuencias de dicha especificidad en la comprensión, uso y producción infantil. Históricamente, las representaciones externas se han considerado un medio para acceder a las representaciones internas o simples traducciones de otros sistemas simbólicos, como el lenguaje. Por ejemplo, Piaget (Piaget e Inhelder, 1966) tomaba las representaciones gráficas infantiles como prueba más o menos directa de sus imágenes mentales, sin considerar otros factores como la tecnología empleada, las convenciones del dibujo en su cultura o la experiencia de los niños (Scheuer et al., 2000).

Por otra parte, solo el lenguaje oral ha suscitado interés como sistema representativo, en detrimento de otros supuestamente secundarios. Sin embargo, desde hace algunos años el estudio de las particularidades de diferentes sistemas de representación condujo a ciertas
distinciones conceptuales, que destacan cómo la naturaleza propia de estas herramientas repercute en la cognición y aprendizaje de quien las emplea. En este sentido, el término representación, más general que el de símbolo, es un concepto psicológico de gran relevancia, que permite captar tanto el producto final como su proceso de producción, análogo al término simbolización o semiotización (Martí, 2003).

Considerando la diversidad de representaciones, es posible oponer las representaciones internas a las externas. Las representaciones internas son individuales, privadas y mentales. Pueden ser verbales, como el lenguaje interior, o no verbales, como las imágenes que soñamos o imaginamos. Las representaciones externas son ostensibles, directamente perceptibles y susceptibles de ser compartidas. Dentro de las representaciones externas es posible diferenciar aquellas de naturaleza efímera—como el lenguaje oral, los gestos simbólicos y la lengua de señas—de aquellas de carácter permanente. Estas últimas aluden a objetos y marcas viso-espaciales que remiten y significan otra realidad.

Dentro de las representaciones externas de carácter permanente, se encuentran diferentes sistemas de representación que pueden guardar diversos grados de semejanzas perceptuales o iconicismo con la entidad que representan. Algunos de ellos emplean marcas viso-espaciales que en sí mismas carecen de significado, pero que al ser combinadas coherente y sistemáticamente proveen información y adquieren significación, como es el caso de la notación matemática, la escritura o la notación musical. Por su parte, los objetos simbólicos—cuyo interés es central en esta investigación—se caracterizan por ser objetos físicos y al mismo tiempo símbolos de la entidad que representan, pudiendo ser bi- o tridimensionales, como el caso de una
fotografía o una maqueta (Maita y Peralta, 2007; Martí, 2003; Salsa y Peralta, 2010; Teubal y Guberman, 2014).

Principales características de las representaciones externas

Las representaciones externas de carácter permanente poseen una serie de características generales e íntimamente ligadas entre sí, que las definen:

1. Tienen una naturaleza doble. Son objetos concretos y simultáneamente símbolos de la entidad que representan (DeLoache, 1987). El carácter concreto, oponible y perceptible es materializado de diversos modos, según cada sistema y las propiedades formales que lo organizan (Martí, 2003; Martí y Pozo, 2000). Así, un mapa puede ser un trozo de papel o una imagen interactiva por la que me desplazo en mi smartphone, pero ambos representan un espacio físico, y su uso permite que me oriente.

2. Son asimétricas. Las representaciones externas siempre remiten a una realidad distinta a ella, pero esa realidad no remite a la representación. Por ejemplo, una foto de mi abuela puede representarla, pero de ningún modo mi abuela está en representación de su foto. Un aspecto vinculado a esta asimetría es que símbolo y referente en general tienen propiedades físicas diferentes, y por tanto tienen utilidades o affordances diferentes. Así, puedo ver, leer o tocar un mapa. Incluso si está presentado en un dispositivo tecnológico táctil, puedo trasladarme virtualmente por el espacio, pero en modo alguno podría viajar a través de él (DeLoache, 2005; Salsa y Peralta, 2010).
3. Tienen permanencia física. Las representaciones externas tienen una materialidad determinada, que permite que sean archivadas, manipuladas y modificadas, lo que facilita que sean objeto de conocimiento, aprendizaje y transformación cultural (Martí, 2003; Martí y Pozo, 2000).

4. Son independientes de su creador y del contexto de producción. A diferencia del lenguaje oral, la lengua de señas o los gestos simbólicos, las representaciones externas permanentes existen más allá del sujeto que las produce, del proceso y del contexto temporoespacial de producción, por lo que puede haber una separación temporal y espacial entre quien las produce y quien las interpreta, y por tanto son menos dependientes del contexto que el lenguaje oral o los gestos (Martí, 2003; Martí y Pozo, 2000).

5. Son desplegadas en el espacio y no en el tiempo. Su naturaleza está definida por la organización de propiedades espaciales, como la linealidad, la proximidad, el tamaño o la inclinación, importantes para dar cuenta de las características de cada sistema (Martí y Pozo, 2000).

6. Constituyen sistemas organizados. Las representaciones externas no son marcas aisladas; por el contrario, están organizadas de acuerdo a reglas formales que se plasman en aspectos gráficos y espaciales que varían entre sistemas. Esta propiedad no es privativa de los sistemas que emplean marcas arbitrarias, como el lenguaje escrito o la notación musical. Es válida también para otras representaciones, como fotografías o dibujos, aunque sus reglas de composición sean menos estrictas. Por tanto, las representaciones externas no son una traducción directa de la realidad que representan. Siempre son modelos de esa realidad, muchas
veces de difícil interpretación, por lo que constituyen sistemas opacos (Martí, 2003; Martí y Pozo, 2000).

7. Tienen una función pragmática. Esto significa que son empleadas para el logro de objetivos determinados. El carácter funcional de las representaciones externas permanentes se basa en la posibilidad de registrar y conservar información a lo largo del tiempo, lo que las distingue de otras formas de representación. Así, las dos funciones clásicas que se le atribuyen son la memoria y la comunicación (Donald, 1991; Martí, 2003).

En su conjunto, estas características evidencian que las representaciones externas de carácter permanente constituyen un dominio de conocimiento propio y diferenciado de las representaciones internas y del lenguaje oral, gestual o de señas (Maita y Peralta, 2007; Martí, 2003; Martí y Pozo, 2010; Salsa y Peralta, 2010). Dentro de este dominio hay diversos sistemas –cuya complejidad varía en función del objeto que representan y de la relación entre marca y referente–, que van de los más icónicos, como las fotos, a los más arbitrarios, como las letras y los números.

El desarrollo de la comprensión y el aprendizaje de las diversas representaciones externas tiene un curso singular y diferenciado. Esto no significa negar una capacidad simbólica general (Piaget, 1946; Vygotsky, 1991). Sin embargo, esta competencia general no es suficiente para explicar las diferencias en la apropiación de cada sistema. Así, las diferencias evolutivas en la comprensión, uso y producción de diferentes representaciones externas se deben a las propiedades formales y de organización de cada sistema, que imprimen vías peculiares para cada caso (Martí y Pozo, 2000).
Relevancia cultural, cognitiva y educativa de las representaciones externas

Desde las pinturas rupestres de Altamira y Lascaux hasta las fotos que publicamos en redes sociales, se observa la tendencia humana a representar externamente otra realidad. Al respecto, los trabajos de Donald (1991; 1993) señalan que el desarrollo de estas formas está ligado a las condiciones concretas y materiales de existencia de los grupos humanos.

Las primeras representaciones externas fueron de carácter pictórico; datan del Paleolítico superior y su desarrollo culminó en la creación de diversos sistemas gráficos, como el dibujo, la escritura y la notación numérica. Estas creaciones fueron congruentes con nuevas formas de vida social, particularmente con la necesidad de regular interacciones sociales y transacciones económicas. En esta línea, es posible reflexionar sobre el surgimiento relativamente reciente de las TIC en el seno de la globalización y el modo de organización social capitalista, que permite y es coherente con una forma de comunicación dinámica, veloz e hipermedial.

La emergencia y desarrollo de las representaciones externas permanentes fue relevante no solo en términos de organización social, sino que también modificó la arquitectura funcional de la mente humana. Las representaciones externas son poderosas herramientas cognitivas. Su carácter permanente permitió superar limitaciones biológicas de percepción, memoria y procesamiento, por lo que se constituyeron en una suerte de memoria externa (Donald, 1991; Harris, 1986; Martí, 2003). Al respecto, Teubal y Guberman (2014) sintetizan en tres aspectos cómo las representaciones externas permanentes potencian las capacidades humanas. En primer lugar, expanden...
la mente. Gracias a las representaciones externas, los seres humanos podemos superar los límites de nuestra memoria desde el punto de vista de la cantidad de material almacenado, el tiempo que ese material está disponible y la posibilidad de recuperarlo con rapidez y precisión. En segundo lugar, regulan la mente. Es decir, incrementan la capacidad de las personas de organizarse a sí mismas (Clark, 1999; Donald, 1991). En tercer lugar, permiten compartir contenidos mentales. Las representaciones externas permiten extraer información, compartirla, comunicarnos e interactuar a través de ellas.

En síntesis, la creación y uso de representaciones externas tuvo enormes consecuencias culturales y cognitivas. Sin embargo, la mera presencia de estas herramientas en la sociedad no significa que su apropiación sea simple y directa. Su apropiación supone la existencia de contextos educativos formales e informales que crean las condiciones para que sea posible (Martí, 2003). Asimismo, las diversas representaciones externas permanentes son comúnmente utilizadas como recursos didácticos. Ahora bien, dadas sus características, estas representaciones no son transparentes, sino que constituyen sistemas opacos cuya comprensión requiere que un novato reconstruya la intención o finalidad de uso, proceso difícil sin la guía y regulación de personas más expertas de su cultura. Este proceso comienza en las tempranas interacciones del bebé con personas significativas de su entorno. En los hogares, las representaciones externas comúnmente median las interacciones que los niños entablan con pares y adultos, sea con fines de entretenimiento o de enseñanza. Por ejemplo, los adultos suelen leer a los niños cuentos ilustrados, utilizar imágenes para enseñar palabras, bloques para enseñar números y muñecos e ilustraciones para enseñar partes del cuerpo, entre otros. En estas interacciones los
adultos ayudan implícita o explícitamente a comprender estos objetos. Estas prácticas, junto a la educación formal, articulan el acceso a las diversas representaciones externas presentes en su cultura. Así como en la filogenia la emergencia de las representaciones externas estuvo ligada a las condiciones concretas y materiales de existencia de los grupos humanos, en la ontogenia su apropiación también es indisociable del contexto social de uso e implica un proceso de reconstrucción activo del niño en íntima relación con sus figuras de crianza y con su grupo de referencia.

El estudio de las representaciones externas constituye un tema privilegiado para analizar el entramado entre cultura, educación y desarrollo (Martí, 2003). La interiorización de las diversas representaciones externas puede entenderse como parte del proceso de alfabetización de un sujeto. El dominio y uso de estos sistemas constituyen derechos esenciales para la plena participación de un sujeto en su comunidad. Desde esta perspectiva, no limitamos la alfabetización al aprendizaje de la lecto-escritura. En un sentido amplio y multimodal, la alfabetización implica la progresiva capacidad de comprender, usar y producir las múltiples y variadas representaciones externas presentes en la cultura con el objeto de lograr una interacción eficaz con el entorno y consigo mismo (Teubal, 2010; Teubal y Goldman, 1998; Teubal y Guberman, 2014).

Teniendo en cuenta la diversidad de representaciones externas permanentes, en este trabajo nos centramos en los objetos simbólicos. Específicamente, nos abocamos al estudio de la comprensión y uso de imágenes digitales e interactivas provistas por dispositivos tecnológicos táctiles por parte de niños pequeños, cuya relevancia cultural y educativa es cada vez más notoria.
Los objetos simbólicos

Pigmalión, rey de Chipre, frustrado por no encontrar una mujer ideal con quien casarse, decidió dedicar su tiempo a esculpir estatuas de marfil. Una de ellas, Galatea, era tan hermosa que su creador se enamoró de ella. Tras un sueño, Afrodita, conmovida por el deseo del rey, dio vida a su escultura, y transformó a Galatea en una mujer real.

El mito griego de Pigmalión metaforiza e ilustra el desafío al que se enfrentan los niños pequeños para comprender la función simbólica de diversos objetos presentes en su entorno. Sucede en ocasiones que, así como Pigmalión (capturado por la belleza de su creación) trataba a su estatua como a una mujer real, los niños pequeños tratan a los objetos simbólicos como objetos concretos y atractivos en sí mismos, sin captar su dimensión representativa. Sin embargo, a diferencia de Pigmalión, los niños no cuentan con la ayuda de Afrodita, y tienen que emprender un largo proceso para comprender la naturaleza simbólica de este tipo de objetos (DeLoache, 2005).

En el capítulo anterior, resaltamos que el desarrollo de la capacidad de comprender, usar y producir diversas representaciones externas, como los objetos simbólicos, dista mucho de ser una simple incorporación desde el mundo exterior. Se trata de un proceso de reconstrucción activa por parte del sujeto, en que se entrelazan aspectos evolutivos, culturales y educativos. En este capítulo, exponemos el concepto de objeto simbólico y describimos un
modelo teórico para el estudio del desarrollo de su comprensión, así como de los factores intervinientes en este proceso. Asimismo, discutimos estudios llevados a cabo en el marco de este modelo, que constituyen los antecedentes directos de la investigación que se presenta en este libro.

Hacia una definición de los objetos simbólicos

Buena parte de los objetos que utilizamos en nuestra vida cotidiana no son solo objetos físicos, son también objetos simbólicos o de representación. Cuando miramos fotos, organizamos nuestra agenda, nos guiamos por señales de tránsito, interactuamos con una pantalla para buscar información, realizar una videollamada o usar aplicaciones, nuestras actividades están mediadas por este tipo de objetos. La característica distintiva de los objetos simbólicos es que son objetos físicos y simultáneamente símbolos de la entidad que representan. Es decir, tienen una naturaleza doble (DeLoache, 1987), y esta característica es central al analizar el desarrollo infantil de su comprensión. Los objetos simbólicos pueden ser bidimensionales, como las fotografías, o tridimensionales, como las maquetas, y guardar diversos grados de similitud perceptual o iconicismo con la entidad que representan. Así, por ejemplo, una fotografía es más icónica que un dibujo, y un dibujo es más icónico que un bosquejo (Maita y Peralta, 2007; Martí, 2003).

Si pensamos en la vida cotidiana de un niño, en su entorno familiar y extrafamiliar, resulta evidente que el uso de este tipo de objetos es constante. Además, su empleo como recurso didáctico es frecuente en todos los niveles educativos. En el nivel inicial,
podemos pensar en el uso de un ábaco, bloques o fichas para enseñar operaciones aritméticas sencillas, de fotografías para evocar recuerdos, de libros ilustrados para enseñar palabras y de muñecos para enseñar partes del cuerpo, entre tantos otros. En la actualidad, revisten especial interés los dispositivos tecnológicos, cuya implementación como herramientas para el aprendizaje es propuesto desde los diseños curriculares y promovido por diferentes políticas educativas, tanto a nivel nacional como provincial (por ejemplo, Aprender Conectados, Infinito por Descubrir, Tramas Digitales, etc.).

Un modelo teórico para el estudio del desarrollo de la comprensión y uso de objetos simbólicos

El presente trabajo se inspira en una línea de investigación surgida hacia fines de 1980 a partir de los trabajos fundacionales de DeLoache y colaboradores (DeLoache, 1987; 1989; 1991; DeLoache y Burns, 1994). Desde entonces, numerosas investigaciones dieron lugar a un prolífico modelo teórico para entender y explicar el desarrollo infantil de la comprensión y uso de diversos objetos simbólicos.

En el equipo de investigación de Peralta y colaboradoras, se realizaron estudios sobre la comprensión de objetos simbólicos tridimensionales, como maquetas (Jauck et al., 2015; Maita et al., 2012; Peralta y Salsa, 2003a; 2004), y bidimensionales, como mapas, fotografías impresas y digitales (Jauck y Peralta, 2016; 2019; Maita et al., 2014; Maita y Peralta, 2008; 2010; 2012; Peralta y DeLoache, 2004; Peralta y Salsa, 2003a; 2011; Salsa y Peralta, 2005; 2007). También se indagó el aprendizaje de palabras a través de imágenes
con distinto nivel de iconicismo, así como el aprendizaje de un concepto biológico a través de imágenes impresas y digitales (Mareovich y Peralta, 2014; 2016; 2017; Mareovich et al., 2015; 2019; Raynaudo y Peralta, 2019).

Comprender el carácter representacional de los objetos simbólicos constituye un verdadero desafío cognitivo para los niños pequeños, desafío que se deriva de la naturaleza doble de estos objetos, ya que deben ver al objeto en sí mismo y a través de él la entidad que representa (Maita y Peralta, 2007). Su comprensión requiere cierto grado de flexibilidad cognitiva, que permita mantener activas y de manera simultánea dos representaciones mentales: la del objeto y la de aquello que representa, estableciendo relaciones entre una y otra (DeLoache, 1987).

Numerosas investigaciones emplearon una tarea de búsqueda para indagar el acceso a la comprensión simbólica de diferentes objetos (DeLoache, 1989; DeLoache y Burns, 1994). La tarea consiste en esconder un juguete en una habitación sin que el niño observe. Posteriormente, se le muestra al niño, por medio de un objeto simbólico –como una maqueta, fotografía o video– dónde se encuentra el juguete, y se le pide que con base en esa información lo busque en la habitación. Por tanto, el objeto simbólico es la fuente de información para resolver la tarea, y para encontrar el juguete el niño debe establecer la relación entre el símbolo y el referente en la realidad. Esta tarea se consolidó como herramienta de investigación por dos grandes motivos. En primer lugar, se destaca su validez ecológica. Los niños de culturas occidentales están familiarizados con juegos de escondidas, por lo que les resulta una tarea muy atractiva. En segundo lugar, su resolución requiere de escasas habilidades verbales. El uso del objeto como símbolo es el indicador por el que se mide su comprensión, por lo que resulta un procedimiento adecuado para trabajar con niños pequeños.
Un concepto central de este modelo teórico es el de *insight* representacional, que refiere al conocimiento explícito o implícito de que un símbolo y su referente están relacionados (DeLoache y Marzolf, 1992). La emergencia del *insight* representacional resulta del interjuego de diversos factores. Algunos, ligados a las características del objeto simbólico, como su bi- o tridimensionalidad, y el grado de similitud perceptual respecto de aquello que representa. Otros, ligados a factores madurativos vinculados a la edad y a la experiencia simbólica. Además, la instrucción que se recibe por parte de alguien más experto incide en la comprensión simbólica de un objeto (DeLoache *et al.*, 1999). A los fines expositivos, a continuación se describe cada uno de estos factores de manera separada, no obstante, se considera su influencia conjunta en el acceso a la comprensión de objetos simbólicos.

La bi- o tridimensionalidad

Utilizando tareas de búsqueda, diversos estudios demostraron que, bajo ciertas condiciones, a los 36 meses los niños comprenden la función simbólica de un objeto tridimensional, utilizando una maqueta como fuente de información para resolver la tarea en un 75%-90% de las búsquedas propuestas, mientras que a los 30 meses su desempeño no supera el 20%. Cuando se trata de objetos bidimensionales, como imágenes impresas y videos, los niños comprenden su función simbólica a los 30 meses, utilizando la imagen para resolver la tarea en un 75% de las búsquedas, mientras que a los 24 meses su desempeño no supera el 20% (DeLoache, 1987; 1991; DeLoache y Burns, 1994; Peralta y DeLoache, 2004; Troseth y DeLoache, 1998).

Recientemente, Jauck y Peralta (2016; 2019) encontraron que, cuando se trata de una foto digital tomada con una *tablet*, ya a los 24 meses comprenden su función
simbólica en una tarea de búsqueda. Cabe destacar que en esta investigación la fotografía era tomada junto al niño, lo que probablemente acentuaba la correspondencia imagen-habitación y la intención con que se empleaba en la tarea, lo que favorecía el insight representacional.

Estos resultados contraintuitivos (ya que podría pensarse que a edades tempranas un objeto tridimensional es más transparente como símbolo que uno bidimensional) se comprenden a la luz de la hipótesis de la representación dual (DeLoache, 1987). Tal como Pigmalión, los niños más pequeños utilizan la maqueta como objeto concreto y atractivo en sí mismo, lo que les impide ver a través de ella aquello que representa. Por tanto, su dificultad para alcanzar el insight representacional y resolver la tarea no se debe a un problema de memoria ni a una ausencia de habilidades simbólicas. Antes de los 30 meses, los niños hablan, emplean gestos y en sus juegos se valen de objetos para representar cosas y situaciones ausentes. Su dificultad radica en mantener activas dos representaciones y apreciar la naturaleza doble de la maqueta, lo que evidencia menor flexibilidad cognitiva que los niños mayores (DeLoache, 1987). Puede pensarse, además, que una maqueta podría generar expectativas sobre su uso con fines exclusivamente lúdicos y no como medio simbólico para resolver un problema. Asimismo, los más pequeños tienen mayores dificultades para inhibir los esquemas sensorio-motrices que se activan frente a un objeto atractivo y manipulable, lo que dificulta la doble representación. Las imágenes, por su parte, generalmente no tienen otra función más que ser una representación. Desde las tempranas interacciones del niño con personas significativas de su entorno, son empleadas para denotar o referir otra realidad, lo que contribuye a la comprensión de su dimensión representacional. Además, a esa edad ya tratan las imágenes como
objetos de contemplación y no de acción, y son menos atractivas como objetos manipulables, lo que favorece el interés por su dimensión representativa y no por sus propiedades físicas.

Este modelo teórico no estuvo exento de críticas. Se ha señalado que los niños podrían resolver la tarea de búsqueda basándose solo en la correspondencia perceptual, guiados por el recuerdo de dónde vieron esconder el objeto y no por comprender la relación entre símbolo y referente (Blades y Spencer, 1994; Lillard, 1993; Perner, 1991). En respuesta a esta crítica, DeLoache et al. (1997) diseñaron un ingenioso estudio en el que compararon la ejecución de niños de 30 meses en dos tareas, una que requería un uso simbólico del espacio y otra que no. En una condición, escondían el juguete en una habitación y se les pedía que, con base en esa información, lo buscaran en una maqueta. En otra condición, luego de esconder el juguete en la habitación, se presentaba una máquina con luces y sonidos, y se les hacía creer que esta máquina era capaz de agrandar y achicar la habitación. A continuación, se les solicitaba que esperaran en una sala contigua, mientras se escuchaban los efectos de la increíble máquina, y cuando ingresaban nuevamente, el espacio mayor había sido sustituido por la maqueta. De manera que para los niños se trataba de la misma habitación, solo que más pequeña. Por tanto, la resolución de la tarea no implicaba tomar un espacio en forma simbólica, sino solo recordar dónde había sido escondido el juguete. Los resultados fueron contundentes: cuando los niños creyeron que la maqueta era la habitación, resolvieron el 76% de las búsquedas, en contraste con el 19% alcanzado en la versión clásica de la tarea, que requiere comprender la relación simbólica entre ambos espacios. Este estudio, en conjunto con numerosas investigaciones realizadas, indica que la correspondencia
es necesaria pero no suficiente para resolver la tarea de búsqueda. El uso simbólico de un objeto se basa en la doble representación y en la comprensión de la intención con que se emplea. Para que un niño compreenda un objeto simbólico es necesario que compren la finalidad o intención con que otro ser humano lo está empleando en un contexto particular (DeLoache, 2004; 2005; Tomasello, 1999).

La manipulación

Desde la hipótesis de la representación dual, la manipulación de un objeto impacta negativamente en su comprensión como símbolo, al acentuar sus propiedades concretas. Por tanto, el reconocimiento de su función representacional es más sencillo si se reduce el impacto de sus características físicas (DeLoache y Marzolf, 1992; Uttal et al., 1997; Uttal et al., 2006; Uttal et al., 2009).

En esta línea, DeLoache y Marzolf (1992) permitieron que niños de 36 meses manipulen y jueguen libremente con la maqueta minutos antes de realizar la tarea de búsqueda. Esta variación disminuyó significativamente su desempeño (44%) en comparación con otro grupo que no tuvo esa experiencia antes de realizar la tarea (77%). Si la maqueta era ubicada detrás de una ventana y solo era asequible por observación, ayudaba a los niños de 30 meses a comprender la relación simbólica al tomar distancia física y mental de la maqueta como objeto concreto. En esta condición el desempeño de los niños alcanzó un 54%, en comparación con el 15-20% alcanzado en la versión clásica de la tarea.

Estos resultados se extendieron a tareas de aprendizaje de letras, palabras y producción verbal. Por ejemplo, Chiong y DeLoache (2012) y Tare et al. (2010) indagaron el impacto de la manipulación de libros desplegables y del iconicismo de la imagen en el aprendizaje de letras
y palabras en niños de entre 18 y 36 meses. De manera análoga a otros estudios (Mareovich y Peralta, 2014; 2016), encontraron que el empleo de libros con imágenes icónicas favoreció el aprendizaje, mientras que el uso de libros desplegables impactó negativamente. Gelman et al. (2005) hallaron que madres y niños de entre 30 y 36 meses produjeron un lenguaje más elaborado, abstracto y genérico cuando interactuaron con imágenes que cuando lo hicieron con objetos, en que se centraron en las características particulares de los objetos.

En el dominio de las matemáticas, diversos estudios también señalaron la superioridad de las representaciones bidimensionales por sobre las tridimensionales en la comprensión y aprendizaje infantil, lo que evidencia que el mero uso de un objeto manipulativo no garantiza el aprendizaje de conceptos matemáticos e incluso puede perjudicarlo (Petersen et al., 2014; Rodríguez et al., 2018; Salsa y Martí, 2015; Uttal et al., 2013). Letras y números en tres dimensiones, bloques o libros con imágenes desplegables son frecuentemente utilizados como recursos didácticos manipulables. Sin embargo, la manipulación que pretende aumentar el compromiso e interés del niño en la tarea, a edades tempranas, puede obstaculizar el aprendizaje al dirigir la atención al objeto concreto, lo que dificulta la doble representación.

La hipótesis de la representación dual entra en tensión con postulados de larga tradición en psicología del desarrollo y psicología educativa que señalan que la interacción y exploración manual de objetos beneficia la comprensión y aprendizaje infantil. Esta idea se remonta a Fröbel (1782-1852) y encuentra su fundamento en los posteriores trabajos de Montessori (1917) y Piaget (1964), que valoraron el empleo de materiales manipulativos como soportes para la enseñanza. Estos argumentos son toma-
dos para dar respaldo al uso de materiales concretos como soportes didácticos, muchas veces sin considerar las condiciones en que los niños pueden beneficiarse de dicho uso. De esta forma, se asume de manera general que el niño está aprendiendo mientras trabaja con materiales concretos (McNeil y Uttal, 2009).

De acuerdo con Montessori (1917) y Piaget (1964), el uso de materiales concretos como herramientas para la enseñanza se sustenta en la tesis de que el desarrollo cognitivo progresa de lo concreto a lo abstracto. Antes de los 6-7 años, los niños tienen dificultades para pensar en el mundo en términos abstractos, por lo que requieren de experiencias concretas para poder representarlo. Si bien investigaciones recientes han desafiado estos postulados al encontrar que niños muy pequeños poseen conocimientos abstractos sobre diferentes aspectos de la realidad (Barth et al., 2005; Gelman, 2005; McCrink y Wynn, 2004), este punto de vista es generalmente aceptado en ámbitos educativos. Desde esta premisa, la propuesta pedagógica parte de la educación sensorial, que pone a disposición materiales que propicien la manipulación y experimentación infantil y, con ella, la construcción de nuevos conocimientos (Moreno-Lucas, 2015).

Bruner (1966), por su parte, distinguió tres modos básicos por los cuales se representa la realidad: el modo enactivo, por el que se representa algo mediante una acción o manipulación de un objeto; el modo icónico, en que se utilizan imágenes que guardan algún grado de semejanza con lo representado; y el simbólico, en que se emplean representaciones arbitrarias. Si bien la forma de representación enactiva es característica del período sensorio-motriz, y la comprensión de representaciones icónicas y simbólicas se consolida en el período preoperacional, no es posible establecer una correspondencia punto
a punto entre los modos de representación de Bruner (1966) y los estadios de Piaget (1964). Las formas de representación establecidas por Bruner (1966) pueden actuar en paralelo y en diferentes momentos del desarrollo (Guijar, 2009). Tanto niños como adultos podemos valernos de diferentes formas de representación, por ejemplo, representarnos una bicicleta, andando en ella (modo enactivo), tomándole una foto (icónico) o escribiendo la palabra (simbólico). Asimismo, frente a un concepto novedoso es posible que los adultos lo representemos de manera enactiva, por lo que no es privativo de los niños pequeños. Desde esta posición, los docentes pueden valerse de materiales concretos cuando enseñan nuevos conceptos a estudiantes de cualquier edad. Así, es posible enseñar cualquier contenido a cualquier edad, siempre que se adecue al modo de representación del aprendiz (Bruner, 1966).

Al respecto, la teoría de la cognición corporizada (embodydiment) considera que la cognición es indisoluble de procesos perceptivos, somato-sensoriales y motores, sumergidos en contextos ecológicos más amplios (Smith y Sheya, 2010). Nuestra capacidad de aprendizaje y comprensión está arraigada en nuestro cuerpo. El conocimiento es encarnado, vivido, situado e imbuido en contextos socio-culturales. Por lo que desde esta perspectiva también se sostiene que la exploración activa y la experiencia concreta contribuyen en mayor medida que la observación pasiva en procesos de aprendizaje (Eyssartier y Lozada, 2014; Kontra et al., 2012).

En suma, frente a la controversia sobre el uso de materiales manipulativos, es posible concluir que si bien desde la hipótesis de la representación dual numerosos estudios señalaron que los niños pequeños pueden tener dificultades para comprenderlos y aprender de ellos, no significa ni implica que deban descartarse como recursos didácticos. En todo caso, estos estudios advierten la importancia de
la guía adulta, que enfatice la intención con que se utiliza el objeto y la relación simbólica implicada. La comprensión y aprendizaje infantil no se asocia solo a la edad del niño y a las características físicas de los objetos, sino —y fundamentalmente— a cómo son empleados en el proceso de enseñanza (Mcneil y Uttal, 2009; Salsa y Peralta, 2000; 2010; Uttal et al., 1997; Uttal et al., 2009).

El iconicismo

El iconicismo o similitud perceptual refiere al grado en que un símbolo se parece físicamente a su referente, y es otro factor que incide en su comprensión. A partir del año y medio de vida, en que el niño comienza a emplear objetos con fines simbólicos, cuanto más parecido sea el símbolo a su referente, más sencillo le resultará acceder a su comprensión simbólica.

Por ejemplo, se encontró que el uso de imágenes icónicas, como las fotografías, favorece el aprendizaje de letras, palabras y conceptos, en comparación con el uso de imágenes menos realistas, como dibujos (Chiong y DeLoache, 2012; Mareovich y Peralta, 2014; 2016; Tare et al., 2010). Resultados análogos se encontraron en tareas de imitación de acciones en que los niños tenían mayor desempeño cuanto más realista era la imagen con que se enseñaba (Simcock y DeLoache, 2006).

En tareas de búsqueda, los niños de 36 meses comprenden la relación maqueta-habitación (en escala 1:7) si los objetos de ambos espacios son idénticos, a excepción del tamaño, y respetan la misma distribución espacial. Cuando la similitud entre espacios es mayor, al usar una maqueta más grande (escala 1:2), ya a los 30 meses comprenden su función simbólica, y la utilizan como fuente de información para resolver la tarea en un 75% de las búsquedas (en comparación con el 15%-20% alcanzado
cuando se emplea una maqueta en escala 1:7). Por tanto, a medida que el niño crece, resulta menos necesaria la similitud perceptual para captar la relación símbolo-referente (DeLoache et al., 1991; Marzolf et al., 1999).

Cabe destacar que el efecto positivo de la similitud en el acceso a la comprensión simbólica de un objeto no es un simple problema de identidad perceptual (Maita y Peralta, 2007; Peralta y Salsa, 2003b). Estudios sobre razonamiento por analogía demostraron que a mayor similitud entre dos situaciones es más sencillo que la representación mental de una promueva –por vía de la comparación– el acceso a la representación de la otra (Gentner, 1989; Gentner y Namy, 1999). Desde esta perspectiva, tal como señaló DeLoache (2002), es posible pensar en las tareas de búsqueda como problemas de razonamiento analógico, en que los niños deben inferir desde el símbolo hacia el referente, y alcanzar un conocimiento relacional.

En su conjunto, estas investigaciones no solo evidencian el efecto positivo de la similitud perceptual símbolo-referente en el acceso a su comprensión, sino también el interjuego de esta variable con la edad del niño.

La experiencia simbólica

La experiencia simbólica del niño refiere tanto a la experiencia general, ligada a su edad y a factores madurativos, como a la experiencia específica con símbolos similares en contextos particulares.

El efecto de la experiencia simbólica general encuentra respaldo en innumerables investigaciones que muestran diferencias por edad en tareas simbólicas (DeLoache, 1987; 1989; 1991). Sin dudas, la edad influye en el desarrollo del lenguaje, de la flexibilidad cognitiva y del control ejecutivo, e impacta positivamente en la comprensión simbólica de objetos y en los aprendizajes por ellos mediados.
Por otra parte, se presuπone que cuanto más grande es el niño más experiencia tiene con diversos sistemas simbólicos. La calidad y cantidad de estas experiencias cotidianas, como el acceso e interacción con material ilustrado, la exposición a dispositivos tecnológicos o el juego de ficción, influyen en su desarrollo simbólico. El efecto acumulativo de la experiencia con símbolos promueve el desarrollo de una sensibilidad simbólica. Es decir, una predisposición básica y general a comprender que, además de su dimensión física, los objetos simbólicos tienen una dimensión representativa.

El impacto de la experiencia simbólica específica fue evaluado en diferentes estudios de transferencia, en que se constató que la resolución de una tarea en que los niños son generalmente exitosos promueve o facilita la posterior resolución de una tarea más difícil (DeLoache, 1991; Jauck y Peralta, 2016; 2019; Marzolf y DeLoache, 1994; Troseth, 2003). Por ejemplo, en niños de 30 meses, la resolución de la tarea de búsqueda con fotografías en que son exitosos facilitó la posterior comprensión simbólica de una maqueta en escala no similar (1:7) (DeLoache, 1991). Este tipo de estudios brinda un fuerte apoyo a la idea de que las experiencias de los niños con un sistema simbólico hace que sean más sensibles y propensos a detectar e interpretar adecuadamente relaciones simbólicas más complejas (DeLoache y Marzolf, 1992).

La instrucción

La instrucción refiere al tipo y cantidad de información proporcionada al niño por un adulto o persona más experta, que guía la comprensión y uso de un símbolo. Este factor ha mostrado tener gran peso en el acceso a la comprensión simbólica de objetos, y es de especial interés en el presente escrito.
Respecto al tipo de información proporcionada, tanto la referida a la correspondencia símbolo-referente como la que enfatiza la intención o propósito con que se usa un objeto simbólico en un contexto o tarea particular constituyen dos vías importantes que favorecen el *insight* representacional, siendo la intencionalidad la vía privilegiada (Salsa y Peralta, 2007; Peralta *et al.*, 2013).

En relación con la cantidad de información, diversas investigaciones indagarón el impacto de esta variable y su interjuego con la similitud perceptual del objeto y la edad del niño. En su conjunto, los estudios que emplearon tareas de búsqueda con maquetas permiten afirmar que a los 30 meses los niños resuelven la tarea solo si se emplea una maqueta con escala similar (1:2) y reciben informaciones completas, es decir, instrucciones explícitas y detalladas sobre la correspondencia maqueta-habitación. A los 36 meses, los niños comprenden la función simbólica de una maqueta en escala no similar (1:7) cuando reciben informaciones completas. Si se reduce la cantidad de información proporcionada, no logran captar la relación simbólica, a menos que se simplifique la tarea aumentando el tamaño de la maqueta (escala 1:2). Por tanto, si se emplean espacios similares (escala 1:2) a los 36 meses los niños no requieren de instrucción para resolver la tarea. Hacia los 4 años de edad comprenden la función simbólica de la maqueta en escala no similar (1:7) cuando reciben instrucciones mínimas, mientras que, si no reciben instrucción alguna, recién después de los 5 años lo logran (DeLoache, 1991; DeLoache *et al.*, 1999; Peralta y Salsa, 2003a).

Estudios que indagaron la comprensión de fotos utilizando tareas de búsqueda encontraron que a los 24 meses los niños no comprenden su función simbólica aunque reciban instrucciones completas. A los 30 meses, logran utilizarlas para resolver la tarea solo si reciben instruccio-
nes completas y la habitación es pequeña, mientras que a los 36 meses logran resolver la tarea sin recibir instrucción (Salsa y Peralta, 2005; 2007; Peralta y Salsa, 2011).

En suma, el insight representacional alcanzado para la comprensión de imágenes hacia los 30 meses y de objetos tridimensionales, como una maqueta, hacia los 36 meses es tan frágil que los niños son en extremo sensibles a la instrucción adulta y a la similitud perceptual, dada en este caso por la escala de las habitaciones empleadas (Peralta y Salsa, 2003b). Hacia el tercer año de vida, la capacidad para comprender la naturaleza doble de un objeto es más flexible, por lo que pueden sortear las dificultades que imponen niveles más bajos de instrucción y de similitud perceptual símbolo-referente.

Cabe destacar que la instrucción no es una simple transmisión de información por parte del adulto: implica un proceso de reconstrucción activa por parte del niño para entender la intención con que el símbolo se emplea en un contexto particular. El vocablo ruso empleado originariamente por Vygotsky concibe a la instrucción como una “actividad integrada de interacción”, en la que tanto la enseñanza como el aprendizaje se hallan implicadas (Wertsch, 1988, p. 87). La instrucción del adulto despierta y pone en funcionamiento toda una serie de procesos en desarrollo en el niño. En este escrito utilizamos el término “instrucción” de manera análoga al de “andamiaje” (Wood et al., 1976), aludiendo precisamente a la mediación social por la que un miembro más experto de la cultura guía la comprensión y uso de símbolos. Para indagar el impacto de la instrucción, resulta necesario identificar cuándo la comprensión de un símbolo puede estar en proceso de cambio y ser sensible a la intervención adulta. Así, en las investigaciones centradas en el estudio de maquetas e imágenes, generalmente se trabaja con niños de entre 24 y 36
meses, por tratarse de un período sensible en el acceso a la comprensión de este tipo de objetos (Peralta y Salsa, 2003b; Wertsch, 1988).

En conclusión, comprender la naturaleza doble de los diversos objetos simbólicos presentes en una cultura constituye un proceso complejo para los niños pequeños. Implica cierto nivel de flexibilidad cognitiva que permita mantener activas y de manera simultánea dos representaciones, estableciendo relaciones entre ambas. Ahora bien, esta doble representación no es una adquisición definitiva en el desarrollo infantil. El desarrollo simbólico no solo está ligado a la edad del niño y a las características físicas de los objetos. El hecho de que la similitud perceptual símbolo-referente, la experiencia previa del niño y la instrucción recibida por parte de un adulto beneficien el insight representacional pone de manifiesto la posibilidad de intervenir para facilitar la comprensión de un objeto simbólico dado. Así, el estudio de la acción conjunta de estos factores permite investigar las relaciones entre desarrollo, aprendizaje e instrucción, a la luz del concepto de zona de desarrollo próximo.
Las imágenes digitales e interactivas

En el transcurso de las últimas décadas, surgieron novedosas herramientas que han inundado casi todas las esferas de nuestra vida cotidiana. El acelerado desarrollo de dispositivos tecnológicos y de sofisticados programas, junto al acceso masivo al servicio de internet, parecen desafiar las leyes del tiempo y del espacio, y nos permiten hacer cosas que, aunque hoy sean cotidianas, hace solo algunos años hubieran resultado inimaginables. Es posible realizar videollamadas con una persona que se encuentra a miles de kilómetros de distancia, observar y desplazarse por las calles de una ciudad que desconocemos a través de un mapa virtual, jugar al fútbol desde el living de nuestra casa con una consola que detecta nuestros movimientos y los plasma en una pantalla y usar aplicaciones para comprar, entretenernos, socializar, enseñar y aprender. A diferencia de generaciones anteriores, en la actualidad los niños reciben estos artefactos como parte del legado cultural. Los dispositivos tecnológicos conviven con los objetos e imágenes tradicionales con que habitualmente juegan e interactúan. Es por ello que resulta de sumo interés conocer diversos aspectos involucrados en la comprensión simbólica y uso de estos objetos en el desarrollo infantil.

En este capítulo, en primer lugar exponemos las características generales de las imágenes como sistema de representación, para luego dar cuenta de las peculiaridades de las imágenes proyectadas por dispositivos tecnológicos táctiles.
En este sentido, realizamos un breve recorrido histórico sobre el surgimiento de las TIC. Posteriormente, describimos las propiedades por las que constituyen un sistema de representación novedoso, poniendo especial énfasis en la interactividad. Por último, describimos los debates actuales en torno a la comprensión simbólica de imágenes digitales e interactivas, la interacción entre adultos y niños cuando una actividad está mediada por estas herramientas y el uso de dispositivos tecnológicos por parte de niños pequeños.

Las imágenes como objetos simbólicos

Los sistemas figurativos o basados en la imagen son aquellos que seleccionan determinadas relaciones espaciales del referente y las plasman en el sistema representativo de marcas. Estas marcas son desplegadas en el espacio y tienen una determinada forma perceptible a la vista. Precisamente, el término “figurativo” remite a la idea de figura o forma. Esta característica las distingue de los otros sistemas, como la escritura, la notación matemática o la notación musical, que basan sus marcas en una relación convencional, no figurativa (Martí, 2003; Salsa y Vivaldi, 2012).

En el interior de los sistemas figurativos se encuentran imágenes muy distintas entre sí, tales como mapas, planos, diagramas, dibujos, fotos, videos y las novedosas imágenes digitales e interactivas. Estas imágenes se diferencian en función del grado de similitud perceptual respecto de aquello que representan, del contenido o naturaleza de la información representada, de la forma en que se producen, del soporte en que se presentan y de la intención con que se emplean en el contexto comunicativo. Así, estas cinco dimensiones de análisis permiten dar cuenta de la gran variedad de imágenes existentes.
En cuanto a la similitud perceptual, en un extremo se encuentran aquellas imágenes que representan con alto grado de semejanza las propiedades espaciales del referente, como las fotografías e imágenes audiovisuales. En el otro extremo, aquellas que tienen una relación esquemática e incluso abstracta o arbitraria con el referente, como muchas obras de arte, diagramas y algunos gráficos. También hay imágenes que tienen tanto elementos arbitrarios como icónicos, como los mapas.

Respecto al contenido, la naturaleza de la información representada sin duda puede ser muy diversa. Las imágenes pueden representar un espacio, como un plano; un concepto abstracto, como un diagrama; una relación numérica entre variables, como un gráfico estadístico; o los más diversos recuerdos, como las fotos de mi infancia en Villa Constitución. También, el contenido puede ser real, como las imágenes de un noticiero que observo en televisión, o ficticio, como un dibujo de un superhéroe (DeLoache y Burns, 1994; DeLoache y Marzolf, 1992; Martí, 2003).

En relación con la forma en que se producen, algunas imágenes son producidas mecánicamente, como las fotografías y videos; otras son creadas manualmente, como los dibujos y pinturas. Actualmente, es posible producir imágenes de manera digital, como aplicaciones, modelos y mapas en tres dimensiones. La forma de producción de una imagen, como dimensión de análisis, está íntimamente ligada al contenido o naturaleza de la información representada y a la intención con que puede ser empleada en un contexto particular. Como señalaron DeLoache y Burns (1994), para un adulto resulta obvio que una foto o un video tienen un referente real que en algún momento estuvo frente a una cámara; mientras que un dibujo, una obra de arte o un videojuego no necesariamente representan una entidad real y pueden ser una forma de expresión.
con fines estéticos o de entretenimiento. Sin embargo, es poco probable que un niño pequeño distinga los modos de producción de las imágenes y su relación con la realidad o ficción del referente.

En íntima relación con su forma de producción, las imágenes se diferencian por el soporte en que se presentan. A las clásicas imágenes en formato papel actualmente se añaden las imágenes proyectadas por dispositivos tecnológicos. Estas imágenes pueden ser estáticas (como una fotografía impresa o digital), dinámicas (como las imágenes audiovisuales) o interactivas (como un mapa por el que nos trasladamos virtualmente por el espacio). Hasta hace pocos años, era posible establecer una relación directa entre el soporte y las propiedades de las imágenes. En la televisión solo se proyectaban imágenes audiovisuales y una cámara de fotos producía imágenes estáticas. Sin embargo, el rápido desarrollo tecnológico posibilita que televisores y computadoras también proyecten imágenes con propiedades interactivas, o que los smartphones y tablets permitan tomar fotos y videos e interactuar con la pantalla.

Otra dimensión importante por la que varían las imágenes es la intención del creador y de su intérprete (o de ambos) sobre cómo utilizarlas. Una imagen puede ser empleada para informar, recordar, expresar emociones, divertirse, enseñar. Puede ser una representación genérica, que remite a una clase de personas u objetos, a un concepto o idea de manera general. Muchos libros ilustrados para niños emplean imágenes genéricas en que, por ejemplo, los pollitos y las vacas representan a los animales de la granja, pero no a un animal en particular. Una imagen también puede ser una representación específica, que refiere a una persona, objeto o situación particular,
como el caso de una fotografía que retrata el día de visita a una granja. Incluso, dependiendo del contexto, una misma imagen puede ser empleada como representación genérica o específica, como una foto de mi abuela, que puede representarla específicamente a ella o de manera general a la tercera edad (DeLoache y Bruns, 1994; DeLoache y Marzolf, 1992).

En suma, las imágenes constituyen objetos simbólicos de enorme valor cognitivo, cultural y educativo. Poseen propiedades comunes que las distinguen de otros sistemas de representación. A su vez, las variaciones de las distintas dimensiones dan cuenta de su enorme diversidad y complejidad.

Las representaciones vehiculizadas por dispositivos tecnológicos

Breve repaso histórico

La evolución cultural está ligada a la creación colectiva de artefactos o prótesis que permiten superar limitaciones físicas al tiempo que amplían el mundo simbólico en que vivimos (Bruner, 1990; 1996; Cole, 1999; Tomasello, 1999). Estas creaciones son indisociables de las condiciones sociales, económicas y culturales que hicieron posible su emergencia (Donald, 1991; 1993).

Los primeros desarrollos que dieron lugar a las TIC estuvieron ligados a fines militares y científicos en el marco de la Segunda Guerra Mundial. Hacia los años cincuenta la teoría de la información de Shannon, los aportes de Wiener sobre sistemas de control y cibernética, los avances de von Neumann en ciencias de la computación, junto a la famosa e hipotética máquina de Turing, sentaron las bases de los primeros aparatos capaces de realizar operaciones que hasta entonces únicamente podían ser realizadas por
seres humanos. Posteriormente, avanzada la década del setenta, aparecieron las primeras minicomputadoras de uso personal, que se popularizaron hacia los años ochenta. Los avances de la inteligencia artificial y de los modelos de simulación fueron decisivos para el desarrollo de programas capaces de emular el comportamiento humano inteligente, como jugar al ajedrez o manejar un avión. Por tanto, junto a los avances técnicos ligados al soporte físico o hardware, se destacan los programas o software cada vez más sofisticados y accesibles. Esta accesibilidad está ligada al desarrollo de interfaces –o modos de interacción entre máquina y usuario– cada vez más simples y parecidas a la manera en que las personas interactuamos con el mundo físico (Coll, 2004; De Vega, 1984; Martí, 2003).

La integración de estos avances técnicos condujo a una ruptura en la manera en que los seres humanos tratamos la información. Por un lado, una nueva manera de codificar la información basada en un modelo digital de combinaciones de 0 y 1 permitió almacenar y transmitir grandes cantidades de información de manera fácil, rápida y precisa, en comparación con los sistemas analógicos. Ejemplo de ello fue el surgimiento de los ya antiguos diskettes o de la fotografía digital. Por otro lado, la mejora en la transmisión de información por medio de fibra óptica y satélites culminó en la popularización de las TIC. A comienzos de la década de los 90 del siglo xx, la creación del programa World Wide Web –conocido como páginas web–, la accesibilidad al servicio de internet, los avances técnicos de las computadoras y la digitalización dieron lugar a formas inéditas por las que los seres humanos nos relacionamos con la información.

De manera análoga a las imágenes, la escritura y la notación numérica, el surgimiento de las TIC implicó la emergencia de un nuevo sistema de representación...
externa, que amplía y modifica los procesos psicológicos mediados por ellas. La relevancia de estos artefactos no radica solo en sus rápidas transformaciones y características técnicas, sino –y fundamentalmente– en sus condiciones de uso. A diferencia de otras invenciones tecnológicas importantes de las sociedades pre- o industrializadas, las TIC constituyen verdaderas prótesis que amplían nuestras capacidades físicas y nos permiten crear, obtener, almacenar y transmitir información en poco tiempo y con bajo costo, por lo que su emergencia suele compararse a la invención de la imprenta (Martí, 2003). La rápida propagación de estas herramientas generó profundas modificaciones en las formas de producción, organización del trabajo, educación y relaciones sociales, y cambió así las condiciones materiales de existencia de los grupos humanos. A tal punto que a la sociedad emergente de esta revolución tecnológica y cultural clásicamente se ha denominado “sociedad de la información” (Castells, 1997).

Este breve repaso histórico evidencia cómo la “computación ubicua”, fenómeno propuesto y conceptualizado por Weiser (1999), ya es un hecho. Progresivamente, las computadoras salieron del escritorio para reemplazar a otros artefactos e integrarse a los diversos ámbitos de nuestra vida. Siendo su presencia tan fuerte y su uso tan continuo, se vuelven herramientas invisibles y se desdibujan muchas veces las fronteras entre el mundo físico y el mundo digital (Dillenbourg, 2016).

Propiedades de las TIC como sistema de representación externa

Cada sistema de representación externa impone restricciones, dadas por los símbolos con los que opera y las reglas de composición o sintaxis para combinarlos. Estas
restricciones delimitan tanto sus potencialidades como sus limitaciones para ser utilizadas. Así, un sistema puede resultar apropiado para transmitir determinado tipo de información y no otro, y requiere para su uso y comprensión de conocimientos y destrezas especiales por parte del sujeto (Coll, 2004; Martí, 2003). Al analizar las TIC desde esta perspectiva, lo primero que podemos señalar es que los símbolos con los que opera no son nuevos. En las pantallas se observan fotografías, escritos, numerales, gráficos y mapas, entre tantos otros.

Entonces, ¿en qué radica su novedad? ¿Por qué constituyen un sistema de representación diferente? Se ha señalado que la novedad reside en que a partir de la integración de los sistemas de representación clásicos, las TIC crearon condiciones absolutamente inéditas para representar, acceder, transmitir e interactuar con la información (Coll, 2004; 2021; Gómez, 2016; Martí, 2003). Así, las representaciones vehiculizadas por las TIC –aunque se trate de imágenes, letras o numerales– tienen determinadas propiedades que las distinguen por completo de otros sistemas. Estas propiedades son atribuibles al entorno semiótico más que a las peculiaridades de cada sistema de representación con que opera, y en su conjunto otorgan a las TIC una naturaleza única, lo que las convierte en verdaderas herramientas en el sentido vygotskyano del término. Estas propiedades son:

1. **Formalismo.** Refiere a la forma u organización en que se presenta la información en la pantalla y a su tratamiento por parte del usuario. Dado que el contenido vehiculizado por las TIC remite a los clásicos sistemas de representación, sean figurativos o arbitrarios, su organización sigue las reglas propias de cada sistema. Sin embargo, el tratamiento por parte del usuario
exige para su correcto funcionamiento que se desplieguen acciones muy precisas y en un orden secuencial. Por ejemplo, para agrandar una imagen en una *tablet* es necesario hacer dos toques en la pantalla, o bien extender los dedos de la mano desde el centro hacia los extremos, y en caso de que realicemos otra acción es probable que el dispositivo no responda o execute otra operación.

2. Dinamismo. Refiere a la posibilidad que ofrecen las TIC de representar procesos espacio-temporales o información que cambia con el tiempo en toda su complejidad. Ejemplo de ello son las ya clásicas imágenes audiovisuales o la realidad virtual en que la persona se sumerge en la imagen como si estuviese en una situación real. Esta propiedad se contrapone al carácter estático de otro tipo de representaciones, como las fotografías.

3. Multimedia. Las imágenes proyectadas por dispositivos tecnológicos permiten combinar e integrar diferentes sistemas y formatos de representación. En una misma pantalla se puede encontrar un escrito, imágenes audiovisuales, fotografías y música. La característica multimedia de las representaciones permite una aproximación más diversificada a los contenidos, que solicita distintas entradas sensoriales y exige formas diferentes de procesamiento por parte del usuario.

4. Hipermedia. Esta propiedad es el resultado de la convergencia de la naturaleza multimedia y el empleo de una lógica hipertextual en la presentación de la información. Los medios tradicionales tienen una lógica secuencial y lineal, por la que la información es transmitida y leída. Por ejemplo, el presente libro está escrito para ser leído de izquierda a derecha, de arriba hacia abajo y una página tras otra. Sin embargo, en
un hipertexto, como en una página web, se presentan islotes o paquetes de información que pueden valerse de diferentes sistemas de representación y que solo se vinculan a través de los puentes que el usuario pueda o sepa construir. Así, la hipertextualidad otorga mayor libertad de decisión al usuario en función de sus intereses, lo que a su vez supone ciertas destrezas para la búsqueda e interacción con la información.

5. Almacenamiento y transmisión. Las TIC ampliaron exponencialmente las posibilidades de registro, almacenamiento y transmisión de la información. Así, la proliferación de información junto a la facilidad de acceso y transmisión implicaron un salto en comparación con las posibilidades que ofrecen los sistemas clásicos. Sin embargo, esto puede generar en los sujetos cierta saturación y dificultades para atribuir un significado. Así, la rapidez y accesibilidad de la información no se confunde con el proceso de construcción de conocimiento que implica interpretación, asimilación e integración a conocimientos previos por parte del sujeto.

6. Interactividad. Constituye una de las principales propiedades de las representaciones vehiculizadas por las TIC, de central interés en el presente trabajo. La interactividad refiere a la posibilidad de establecer una relación recíproca entre el usuario y la información transmitida por la pantalla. Esta reciprocidad inauguró un modo de interacción absolutamente inédita entre las personas y los sistemas simbólicos. Si bien las imágenes, letras y números se someten al tratamiento y al proceso constructivo de las personas que intentan usarlos y comprenderlos, no tienen la capacidad de responder de modo instantáneo y contingente a las acciones de las personas. Desde luego,
la capacidad de reacción no es exclusiva de las TIC. En cualquier máquina las acciones de una persona producen resultados. Sin embargo, las computadoras inauguraron una relación bidireccional al ofrecer respuestas o feedback constantes y acordes a la naturaleza de las intervenciones del usuario que permiten reorientar estas intervenciones. La calidad y naturaleza de estas interacciones difiere en función de los dispositivos y programas utilizados y de la información manejada. Por ejemplo, en los primeros videojuegos, las acciones de la persona consistían simplemente en apretar botones, que generaban determinados cambios en la pantalla, como el salto o caída del personaje. Con los procesadores de texto, la acción de escribir en el teclado se observa inmediatamente en la pantalla y de diferente manera en función de las opciones seleccionadas, lo que permite cierto control sobre el proceso de composición. En estos casos, aunque a niveles de complejidad muy diferentes, se establece una interacción manifiesta entre las intervenciones de la persona y los resultados de esas intervenciones.

Así, el desarrollo tecnológico permitió que las propiedades interactivas fueran perfeccionadas y adquiriesan un papel protagónico. Con el desarrollo de las pantallas táctiles, se incorporó el sentido del tacto como forma de interacción y surgió la posibilidad de que las imágenes se proyecten de modo tridimensional. Por tanto, a través de la manipulación física de las representaciones digitales el dispositivo provee de respuestas, señales sociales y pragmáticas que hasta el momento solo podían ser provistas por otro ser humano en el marco de interacciones sociales. Por esto, las imágenes digitales e interactivas reducirían la asimetría entre símbolo y referente, lo que posibilitaría
nuevas affordances o utilidades. La interactividad física alude a la propiedad de las imágenes provistas por dispositivos tecnológicos táctiles al responder instantáneamente y en función de las señales que el usuario emite. La interactividad social alude al intercambio bidireccional, en que un miembro de la interacción responde en función del mensaje de otro. Tradicionalmente, las respuestas, pistas, guías o ayuda en el uso y comprensión de diversas representaciones eran proporcionadas de manera presencial por otro ser humano en el marco de interacciones o prácticas sociales, pero actualmente también pueden estar mediadas por las propiedades interactivas de la imagen. Ejemplos de ello son el videochat y las aplicaciones que guían, corrigen y felicitan al usuario a través de sonidos, palabras, animaciones y vibraciones del dispositivo.

En suma, existe una gran variedad de representaciones vehiculizadas por dispositivos tecnológicos, dada tanto por los diversos símbolos que pueden proyectar como por las variaciones en sus propiedades, por lo que la diversidad y complejidad de estas representaciones puede resultar abrumadora.

En el presente libro nos centramos en la comprensión y uso infantil de imágenes digitales e interactivas. Este tipo de imágenes tiene características peculiares que las distinguen de cualquier otro objeto simbólico: se plasman en un objeto tridimensional, como una tablet o un smartphone, cuyo uso por definición implica manipulación. Además, si bien son bidimensionales, pueden proyectarse de modo tridimensional. La característica más distintiva es que son interactivas, es decir, responden instantáneamente y en función de las señales que el usuario emite. Por tanto, no es posible extender a ellas resultados referidos a la comprensión y uso infantil de otros objetos simbólicos, como
fotografías, videos o maquetas (Sheehan y Uttal, 2016; Troseth et al., 2016).

Primera infancia y pantallas

Debates actuales en torno a su comprensión simbólica, aprendizaje e interacción

La investigación en psicología del desarrollo y psicología educativa se ha hecho eco de los profundos cambios sociales que implicó la fuerte presencia de tecnologías en nuestra vida cotidiana. En los últimos años, la cantidad de estudios en torno al uso, comprensión y aprendizaje mediado por dispositivos tecnológicos ha crecido enormemente (Eisen y Lillard, 2020; Kirkorian et al., 2016; Neumann, 2017). Sin embargo, a edades tempranas, no se cuenta con resultados claros sobre diferentes aspectos involucrados en el acceso a la comprensión simbólica y uso de las imágenes proyectadas por estos dispositivos.

Actualmente existe un fuerte debate sobre el impacto de la manipulación, que implica la interactividad de las pantallas, en el acceso a la comprensión simbólica temprana de las imágenes proyectadas (Sheehan y Uttal, 2016; Troseth et al., 2016). Por un lado, retomando la perspectiva de la representación doble y el modelo teórico de DeLoache (DeLoache, 1987; 1989; 1991; DeLoache y Burns, 1994; DeLoache y Marzolf, 1992), las pantallas táctiles podrían constituir un problema para la doble representación. Diversos estudios demostraron que la manipulación de un objeto simbólico acentúa sus propiedades como objeto concreto y atractivo en sí mismo, y dificulta el acceso a la comprensión simbólica y al aprendizaje (DeLoache y Marzolf, 1992; Uttal et al., 2006; Uttal et al., 2009). A su vez, las pantallas táctiles son utilizadas frecuentemente para
jugar, lo que podría formar expectativas sobre los dispositivos tecnológicos exclusivamente como forma de entretenimiento y no como una herramienta para el aprendizaje (Sheehan y Uttal, 2016).

Además, desde el surgimiento de las primeras imágenes de video, un fenómeno documentado en reiteradas ocasiones fue el déficit de video, que refiere a la dificultad de los niños pequeños de transferir información desde un video al mundo real. Este fenómeno fue documentado en tareas de búsqueda (Schmitt y Anderson, 2002; Troseth y DeLoache, 1998), de aprendizaje de palabras (Krcmar et al., 2007; Roseberry et al., 2009) y de imitación de acciones (Barr y Hayne, 1999; Hayne et al., 2003). Así, para los niños pequeños aprender por medio de un video es muy diferente y más complejo que aprender de la experiencia directa en el marco de interacciones sociales.

Por otro lado, a diferencia de cualquier otro objeto simbólico, como las imágenes de video, TV o computadoras no táctiles, las imágenes digitales e interactivas proporcionan respuestas inmediatas y acordes a las intervenciones del niño; de esta manera, promueven su compromiso e interés en la tarea, lo que demostró contribuir en el aprendizaje. Así, por ejemplo, se constató que niños de entre 24 y 30 meses aprendían nuevas palabras en interacciones presenciales y por videochat de manera significativamente superior a la enseñanza transmitida por un video (Myers et al., 2016; Roseberry et al., 2014). Desde esta perspectiva, la interactividad de las pantallas no crearía un impedimento para la doble representación, sino que la reduciría o incluso la evitaría. Así también, diversos estudios hallaron que la interactividad física de los dispositivos táctiles promueve el uso simbólico de la imagen y el aprendizaje mediado por ella (Choi y Kirkorian, 2016; Kirkorian et al., 2016; Lauricella et al., 2010). Sin embargo, estos beneficios parecen depender de la edad, de la tarea propuesta y del tipo de interactividad de la imagen, por lo que aún no resulta claro bajo qué condiciones
los niños se beneficiarían de las propiedades interactivas de la pantalla (Kirkorian, 2018; Lovato y Waxman, 2016).

Frente a la particularidad de este tipo de imagen y al hecho de que los niños utilizan mayormente estos dispositivos en soledad, surgió el interrogante sobre si la interactividad de la pantalla sería suficiente y podría sustituir la instrucción e interacción con el adulto en procesos de enseñanza y aprendizaje (Troseth et al., 2016). Al respecto, tampoco se encuentra una única posición. Diversos estudios destacaron la importancia de la guía, andamiaje o instrucción del adulto como factor decisivo en el uso y aprendizaje infantil mediado por estas herramientas (Neumann, 2017; Wood et al., 2016). Por ejemplo, Eisen y Lillard (2020) encontraron que cuando un adulto guiaba a los niños, los resultados en el aprendizaje eran similares independientemente del soporte empleado en la enseñanza (sea digital o analógico). A su vez, en condiciones en que el adulto estaba presente, los resultados en el aprendizaje infantil fueron significativamente mayores a cuando los niños utilizaban una aplicación digital e interactiva solos.

Sin embargo, un metaanálisis llevado a cabo por Takacs et al. (2015) desafió la noción de que los niños pequeños necesitan del andamiaje adulto para comprender y aprender de dispositivos tecnológicos. Las autoras analizaron 29 artículos que indagaban el aprendizaje de palabras o la comprensión de un cuento por medio de dispositivos tecnológicos o medios tradicionales, con y sin la guía de un adulto. En sintonía con Eisen y Lillard (2020), constataron que cuando un adulto guía el aprendizaje no se encuentran diferencias significativas en función del soporte utilizado. No obstante, cuando los niños utilizan estas herramientas solos, aprenden más y comprenden mejor las historias al interactuar con dispositivos tecnológicos que con libros impresos. En función de
estos resultados, las autoras señalan que ciertas funciones multimedia como ilustraciones animadas, música y efectos de sonido proporcionarían un andamiaje similar al de un adulto. De manera complementaria, en otro metaanálisis Bus et al. (2015) encontraron que las imágenes animadas (a veces enriquecidas con música o sonidos) que coinciden con la presentación en simultáneo del texto de la historia contribuyen a integrar la información verbal y no verbal, y promueven la comprensión de la historia y el aprendizaje de palabras, mientras que ciertos elementos interactivos como juegos, botones u otras animaciones adicionales pueden dificultarla, y distraen al niño al orientar su atención hacia detalles irrelevantes.

En este marco, también ha cobrado interés el estudio de la interacción materno-infantil mediada por dispositivos tecnológicos. Las investigaciones se centraron en comparar la lectura de cuentos por medio de dispositivos tecnológicos y libros impresos (Chiong et al., 2012; Krčmar y Cingel, 2014; Munzer et al., 2019; Parish-Morris et al., 2013). En su conjunto, estos estudios indican que la lectura de cuentos en formato electrónico dificultó tanto la lectura dialógica como la comprensión de la historia. Cuando las madres leyeron a sus niños libros electrónicos, tanto los niños como las madres hablaron menos y el diálogo fue menos colaborativo. Las intervenciones se centraron en las características físicas del dispositivo y en su manipulación, y se realizaron menos preguntas y comentarios sobre el contenido. Además, aunque la interactividad de la imagen fomentó el interés y la motivación por la actividad, distrajo a los niños de la tarea.

Cabe destacar que si bien estas investigaciones constituyen un valioso aporte, no encontramos estudios llevados a cabo en el contexto natural de los hogares de los participantes ni que indaguen otro tipo de actividades mediadas por dispositivos tecnológicos táctiles, como por ejemplo un juego, por lo
que persisten varios interrogantes sobre las características que adopta la interacción entre adultos y niños cuando está mediada por este tipo de herramientas.

Debates actuales en torno a su uso

Desde el surgimiento de los primeros televisores hasta las más recientes *tablets* y *smartphones*, el uso de dispositivos tecnológicos por parte de niños ha generado fuertes controversias. Por ejemplo, se ha encontrado que madres y padres que acuerdan con su implementación atribuyen a su exposición aprendizajes de sus hijos que en realidad corresponden al desarrollo esperado (DeLoache *et al.*, 2010) o que, a pesar de que los resultados muestren que los niños no aprendieron cuando se les enseñó por medio de dispositivos electrónicos, los adultos están convencidos de su efectividad (Neuman *et al.*, 2014).

Conocer los hábitos y percepciones de los adultos resulta de interés dado que constituyen un modelo para el niño, ofreciendo un punto de referencia sobre su propia relación con estos dispositivos, que progresivamente es internalizada (Martí, 2003). Los hábitos, intereses y actividades que los niños realizan con dispositivos tecnológicos son indisolubles del modo en que personas significativas de su entorno se relacionan con estos dispositivos y regulan su acceso y de las actividades que despliegan junto a ellos. Así, por ejemplo, se ha encontrado que un mayor tiempo de uso de tecnologías por parte de padres y madres y una percepción positiva sobre su utilización se asocia a un mayor uso por parte de sus hijos (Brito, 2018; Lauricella *et al.*, 2015).

Frente a la presencia cada vez más fuerte de estas herramientas, diferentes organismos de salud advirtieron sobre la peligrosidad de un uso excesivo a edades tempranas, al desplazar o sustituir la interacción social, actividad
física y horas de sueño (Academia Americana de Pediatría, 2016; Organización Mundial de la Salud, 2019; Sociedad Argentina de Pediatría, 2017). A pesar de las recomendaciones sobre evitar o limitar su utilización, a nivel internacional numerosos estudios han documentado la presencia de dispositivos tecnológicos en los hogares y su uso cada vez mayor a edades tempranas (Kabali et al., 2015; Lauricella et al., 2015; Nikken y Schols, 2015; Rideout, 2017), aunque en nuestro país se cuenta con escasa información sobre el tema (Pedrouzo et al., 2020; Waisman et al., 2018).

Más allá de este debate, las instituciones educativas, incluso desde el nivel inicial, han incorporado paulatinamente el uso de estas herramientas por diversas razones. Las TIC son uno de los bienes culturales de nuestra sociedad y el trabajo con ellas hoy en día constituye un factor de inclusión que forma parte del proceso de alfabetización del sujeto, la cual es una de las funciones primordiales del jardín de infantes (González y Weinstein, 2006). En este sentido, el Diseño Curricular para la Educación Inicial (2019) reconoce a las TIC como herramientas para la innovación e igualdad de oportunidades. Así también, Aprender Conectados, como política integral de innovación educativa y tecnológica creada en el 2018, se propone garantizar la alfabetización digital para la integración en la cultura digital y la sociedad del futuro.

La impronta pedagógica de las políticas educativas, tanto en la provincia de Santa Fe como a nivel nacional, enfatiza la transversalidad curricular de las TIC en las prácticas de enseñanza. Es decir, se promueve su uso como recurso didáctico al servicio de la enseñanza de diversos contenidos. En esta dirección, se sugiere el empleo de aplicaciones digitales e interactivas disponibles en el mercado para ser incorporadas en las salas, y se señala la importancia de evaluar su pertinencia en función del contenido
y del nivel evolutivo del niño. Se advierte además que la mera presencia de estas herramientas no produce cambios en la manera de enseñar y aprender ni garantiza la alfabetización digital, para lo que resulta central el rol del docente (Diseño Curricular para la Educación Inicial, 2019).

En el mercado se encuentra un sinfín de aplicaciones publicitadas como educativas. Se trata de programas que aúnan aspectos lúdicos con contenidos disciplinares presentados de forma interactiva. Sin embargo, en su mayoría son diseñados únicamente por especialistas en informática, sin integrar conocimientos provenientes de la psicología y la pedagogía. En este sentido, y en relación con el empleo de aplicaciones digitales con fines educativos, destacamos que no se trata simplemente de trasponer el contenido pedagógico analógico al digital. Se señala la necesidad de desarrollar productos que respondan a las necesidades cognitivas y motrices de los niños (Sylla et al., 2015) y con ello la necesidad de profundizar en la construcción de conocimiento situado en nuestro país, que incluya una descripción de la interacción entre los niños y la tecnología y evaluaciones sobre su verdadera efectividad en el aprendizaje.

En el marco de estos planteos, las preguntas que dieron origen a este libro surgieron de las controversias e interrogantes referidos a la comprensión simbólica, interacción, hábitos y percepción de uso de pantallas en la infancia, y constituyen un aporte desde el campo de la psicología del desarrollo simbólico. Específicamente nos preguntamos: ¿los niños pequeños comprenden que las imágenes proyectadas por las pantallas están en lugar de algo que puede existir en la realidad? ¿A qué edad? La manipulación que implica la interactividad de la pantalla, ¿favorece u obstruye el acceso a la comprensión simbólica de las imágenes proyectadas? ¿Qué papel cumple la instrucción
del adulto en el acceso a la comprensión simbólica de estas imágenes? ¿Cómo es la interacción entre adultos y niños cuando una tarea es presentada en una imagen digital e interactiva? ¿Qué hábitos de uso de dispositivos tecnológicos tienen los adultos y niños en sus hogares? ¿Qué percepciones tienen los adultos sobre dicho uso?

Cabe destacar que la pandemia por COVID-19 implicó el uso de dispositivos tecnológicos como herramientas de enseñanza y aprendizaje en todos los niveles educativos, por lo que el tema aquí trabajado adquiere especial relevancia. Más allá de las controversias y diferentes percepciones sobre su implementación, desde el año 2020 estas herramientas constituyeron la vía exclusiva por la que fue posible trabajar, socializar, enseñar y aprender, lo que aceleró el proceso de virtualización de la sociedad, cuyas consecuencias aún hoy resultan incalculables.

En los próximos capítulos, se exponen las consideraciones metodológicas generales, así como los estudios diseñados para responder a las preguntas de investigación.
Consideraciones metodológicas

Conceptualizaciones generales

Existen dos procedimientos metodológicos distintos para las investigaciones psicológicas. En uno de ellos la metodología de la investigación se expone por separado de la investigación dada; en el otro está presente en toda la investigación. Podríamos citar bastantes ejemplos del uno y del otro. Algunos animales —los de cuerpo blando— llevan por fuera la osamenta como lleva el caracol su concha; otros tienen el esqueleto dentro, en su armazón interna. Este segundo tipo de estructura nos parece superior no solo para los animales sino también para las monografías psicológicas y por ello lo escogimos.

Lev Vygotsky

Los términos metodología, método, técnicas y diseño no poseen un sentido unívoco, y cada definición remite a tradiciones científicas diferentes e incluso antagónicas.

En el presente escrito, se sostiene que la metodología no se confunde o reduce al empleo de un método o técnica en particular, sino que atraviesa todo el proceso de investigación y está en estrecha relación con el enfoque teórico adoptado. En palabras del propio Vygotsky, la metodología constituye el esqueleto, la armazón interna de una investigación. El sufijo logía refiere al discurso, reflexión o estudio del método que en una investigación dada no solo permite explicitar los procedimientos empleados, sino también los supuestos o principios teóricos subyacentes y
los modos explicativos ofrecidos. Así, en un continuum que abarca desde el análisis de los postulados epistemológicos-gnoseológicos hasta las técnicas de investigación, la metodología ocuparía la porción central, se ocuparía de la tensión dialéctica entre estos polos. Si se abandonara la reflexión epistemológica, la metodología quedaría reducida a una técnica, y si se abandonaran los aspectos técnicos quedaría limitada a una reflexión filosófica (Marradi, 2007a).

Respecto al método, tanto la etimología griega del término como las acepciones que se encuentran en los diccionarios señalan que es un camino para conseguir un fin (Ander Egg, 1995; Marradi, 2007a). Ahora bien, el método no es una simple secuencia de pasos: está constituido por un conjunto de herramientas y procedimientos en continua adecuación a los problemas y objetivos planteados en la investigación (Archenti, 2007). Desde esta perspectiva, la calidad de un investigador no se expresa por su fidelidad ciega a un método, sino por su capacidad de reflexión, creatividad y sensibilidad frente a las exigencias que un problema en particular plantea (Madge, 1966 y Toulmin, 1972, citado en Marradi, 2007a).

Lo esencial del método es la selección, adaptación o creación de técnicas acordes al problema de investigación. El término técnica, también proveniente del griego, refiere a los recursos tangibles, instrumentos o procedimientos empleados y aceptados por la comunidad científica, ligados a una capacidad artesanal y transmisible (Marradi, 2007a).

Respecto al lugar de la teoría en el proceso de investigación y a la relación teoría-empiria, tampoco existe una única posición. Existen diferencias sobre cómo se concibe la generación de nuevas teorías (por inducción o deducción), sobre la forma en que evoluciona el conocimiento científico (por rupturas o acumulación) y sobre su lugar
en el proceso de investigación. En este trabajo, sostenemos que teoría y método conforman una unidad en la investigación científica. La teoría establece el marco conceptual dentro del que se desarrolla el método, y este fija el horizonte de aplicabilidad de la teoría. Las categorías orientan nuestra mirada hacia determinados problemas, establecen criterios de relevancia de esos problemas y operan como códigos a partir de los cuales interpretamos la realidad. Por tanto, el método se elabora en el marco de estas categorías, y la particular relación entre teoría y empiria otorga a cada investigación un carácter específico (Archenti, 2007). Así, como señaló Rivière (1984) retomando a Vygotsky, los hechos están cargados de teoría y la teoría está cargada de hechos.

Desde este enfoque, el término diseño se reserva para denominar al conjunto de decisiones teóricas y metodológicas que hacen posible la investigación. Entre estas decisiones se encuentran aquellas relativas a la construcción y delimitación del problema, a la selección de participantes, tiempos y espacios en que tiene lugar la investigación y a la recolección y análisis de datos (Piovani, 2007).

Estas definiciones iniciales se vinculan a los postulados teóricos metodológicos de Lev Vygotsky, en los cuales se sustenta el presente trabajo.

Vygotsky (1991a; 1991b; 1991c) realizó un análisis histórico y crítico de las diversas corrientes de psicología de su época. Denunció que la crisis de la psicología era de índole metodológica y radicaba en la escisión de la disciplina en paradigmas contrapuestos. Por un lado, el enfoque naturalista de los fenómenos psicológicos pretendía explicar las funciones psicológicas como procesos naturales. En esta psicología tradicional, el análisis psicológico se basaba en la idea atomística y asociacionista que concebía a los procesos superiores como a la suma de elementos aislados.
Por otro lado, el enfoque idealista estaba orientado a la comprensión y descripción de los contenidos y estructuras psicológicas como fenómenos de naturaleza propia e irreductibles a procesos biológicos. Vygotsky (1991a; 1991b; 1991c) enfatizó que el primer enfoque era incapaz de explicar las funciones superiores, específicamente humanas. La concepción atomística y asociacionista no puede dar cuenta del nexo dinámico-causal y de las relaciones que subyacen en los procesos complejos. El segundo enfoque, por su carácter meramente descriptivo, era incapaz de incorporarse al modelo científico de las ciencias en general. Por tanto, la psicología tenía la profunda necesidad de encontrar una metodología general, de desarrollar categorías y principios que fueran explicativos, de carácter genético y no reduccionistas (Rivière, 1984; Vygotsky, 1991a).

Castorina (2009) señala que el núcleo duro de las tesis vygotskyanas radica precisamente en la crítica a la escisión de la disciplina –caracterizada por una concepción dualista o reduccionista– y en la incorporación de la dialéctica como perspectiva metodológica. Su tesis ontológica, en que se sustenta metodológicamente el presente escrito, es que hay una sola materia en permanente actividad, interpretada tanto en sus aspectos biológicos como en su materialidad histórica y social. Inspirado en el pensamiento de Spinoza y en el materialismo dialectico, enfatizó la necesidad de estudiar los procesos íntegros, como totalidad o configuración, procediendo a través del análisis de unidades y no de elementos aislados.

Así, Vygotsky (1991a) introdujo el punto de vista genético a la psicología experimental. El método genético-experimental, empleado en la investigación que aquí se presenta, propone que el análisis psicológico no debe limitarse a la descripción fenomenológica, sino que implica revelar las relaciones y nexos dinámicos-causales que
subyacen en los fenómenos psicológicos observados, que aporta así una explicación científica de estos. El análisis genético implica el descubrimiento de la génesis del fenómeno. Por tanto, un aspecto fundamental del análisis es convertir el objeto en proceso y estudiarlo en movimiento. Se trata de estudiar el fenómeno en su historia, movimiento y cambio para descubrir las estructuras que subyacen en él (Temporetti, 2018).

Métodos y técnicas de recolección de datos

Tomando como base este enfoque y conceptos, en la presente investigación realizamos cinco estudios para abordar la problemática, objetivos e hipótesis formulados.

Los primeros tres estudios tuvieron como propósito investigar la comprensión simbólica infantil de una imagen digital, 3D e interactiva presentada en una *tablet*. Estos estudios fueron cuasi-experimentales, de carácter evolutivo-transversal. Comparamos diferentes grupos de participantes, de diferentes edades, y las observaciones se realizaron en un único momento (Ato et al., 2013; Montero y León, 2007). Retomando la perspectiva vygotskiana, el análisis evolutivo permitió indagar el cambio en la comprensión simbólica infantil de una imagen digital, 3D e interactiva, teniendo en cuenta diferentes factores involucrados. En los cuasi-experimentos realizados, además de considerar los criterios de inclusión para conformar la muestra, se puso especial énfasis en que los grupos sean relativamente homogéneos en cantidad de participantes, género y nivel socioeconómico –entre otros aspectos– a fin de controlar en lo posible la intervención de variables extrañas y garantizar así la validez interna de los resultados.
En estos estudios, la técnica de recolección de datos fue la observación sistemática seminaturalística. Las observaciones de los niños fueron individuales y se realizaron en las instituciones educativas a las que concurrían. Estas observaciones fueron realizadas a partir de categorías previamente establecidas por la teoría y los antecedentes en que se sustenta esta investigación.

El cuarto estudio fue descriptivo-observacional, de corte transversal. El fenómeno fue observado en un contexto cotidiano para los participantes, siendo esencial el realismo y espontaneidad con que fue abordado (Ato et al., 2013; Montero y León, 2007). Desde un enfoque microgenético, este estudio tuvo como propósito explorar, describir y analizar las propiedades y características de la interacción entre adultos y niños con un juego digital e interactivo. Aquí también empleamos la observación sistemática seminaturalística como técnica de recolección de datos, pero las observaciones fueron realizadas en los hogares de los participantes.

Por último, el quinto estudio tuvo por objeto explotar y describir la tenencia y hábitos de uso de tecnologías en la infancia, así como la percepción de dicho uso por parte de los adultos responsables. Se trató de un estudio ex post facto, descriptivo-selectivo, de corte transversal. El carácter descriptivo-selectivo refiere a que la descripción del fenómeno se realiza a través del registro de opiniones y actitudes de personas por medio de cuestionarios o entrevistas (Ato et al., 2013). En este estudio, se tradujo, adaptó y distribuyó un cuestionario (Rideout, 2013) y los registros fueron realizados en un único momento.
Las tareas empleadas

En los primeros tres estudios, que indagan diferentes aspectos involucrados en la comprensión simbólica infantil de una imagen digital, 3D e interactiva, se adaptó la clásica tarea de búsqueda de DeLoache (1987). La tarea consiste en un juego en que la investigadora esconde un juguete en una habitación sin que el niño observe. Luego, muestra al niño por medio de un objeto simbólico, como una maqueta, mapa, fotografía o video, dónde se encuentra el juguete y le solicita que, con base en esa información, busque el juguete escondido en la habitación. El objeto simbólico es la fuente de información para resolver la tarea. Por tanto, el uso del objeto como símbolo es considerado un indicador de la comprensión simbólica infantil, al mostrar si el niño ha conectado el símbolo con su referente.

Para estos estudios, construimos una habitación con diversos muebles y objetos para ser utilizados como escondites y escogimos un personaje atractivo para los niños (Mickey) como objeto por esconder. Exclusivamente a los fines de la investigación, desarrollamos una aplicación, APP (Unity 3D), instalada en una tablet de 10”, consistente en una representación virtual, interactiva y en tres dimensiones de la habitación real, que además contiene la representación virtual del personaje por esconder. La investigadora escondía el personaje (Mickey) en la habitación real, sin que el niño observase. Posteriormente, le mostraba navegando en la imagen dónde se encontraba escondido el juguete y le solicitaba que con base en esa información lo buscara en la habitación real. Este procedimiento era repetido cuatro veces con cada participante (cuatro subpruebas). Esta tarea fue empleada en los primeros tres estudios que se presentan en el próximo capítulo, en los
que variamos la edad de los niños, la instrucción recibida en la tarea y la manipulación previa de la imagen.

En el cuarto estudio, en que exploramos y analizamos la interacción entre adultos y niños con un juego digital e interactivo, la tarea consistió en el armado de un rompecabezas presentado en una tablet. Esta tarea se basó en el procedimiento empleado por Peralta (1997) para analizar estilos de interacción cognitiva materno-infantil en una situación de resolución de problemas, que consistió en el armado de un rompecabezas con piezas de cartón.

Las dos tareas empleadas –tarea de búsqueda y armado de un rompecabezas– poseen una alta validez ecológica, ya que se trata de actividades frecuentes y familiares para los niños pequeños. Además, el empleo de una tablet como recurso para resolver ambas tareas generó gran interés en los participantes, por lo que resultaron muy atractivas. Cabe destacar que todos los estudios fueron realizados en contextos familiares para los participantes. Las observaciones de las tareas de búsqueda tuvieron lugar en las instituciones educativas a las que concurrían y las del armado del rompecabezas, en sus propios hogares. En suma, recuperando la perspectiva de Vygotsky (1991a), los estudios realizados se situán en contextos cotidianos para los participantes, que permiten interpretar los resultados en el marco de su vida cotidiana, y proporcionan a la investigación una alta validez ecológica.

Participantes

Participaron 93 niños en los estudios cuasi-experimentales (estudios 1, 2, 2A y 3) y 20 diáadas de adultos y niños en el estudio descriptivo-observacional (estudio 4). Además, se contó con 400 casos en el estudio que indaga tenencia,
hábitos y percepción de uso de tecnologías (estudio 5). En todos los estudios, la muestra fue no aleatoria, accidental y por disponibilidad (Marradi, 2007b). Es decir, la selección de los participantes no fue por azar, sino que dependió de criterios teóricos previamente establecidos y de la disposición de los sujetos proclives a participar de la investigación. Los participantes fueron contactados a través de las instituciones educativas a las que asistían, ubicadas en Rosario, Villa Constitución y Empalme Villa Constitución (Provincia de Santa Fe, Argentina). Los estudios se llevaron a cabo conforme a las normas éticas nacionales e internacionales. En primer lugar, se realizaron reuniones con las autoridades de las instituciones educativas, en las que se informó sobre los objetivos y la modalidad de trabajo de la investigación. Una vez que se contó con su autorización, se realizaron reuniones en las instituciones en presencia de directivos, maestras, padres, madres y adultos responsables con la finalidad de informar sobre los propósitos de la investigación e invitar a participar. Se explicitó que en la investigación se protege la confidencialidad y anonimato de los datos de los niños, que su participación es voluntaria e incluye el derecho de retirarse de la tarea si así lo desean. En todos los casos se contó con el consentimiento informado y por escrito de los directivos de las instituciones y de los adultos responsables de los niños. Asimismo, se consideró la voluntad del niño de participar. Antes de realizar la tarea se le preguntaba si quería jugar unos minutos. Todos los niños que integraron la muestra aceptaron con entusiasmo, mientras que los pocos que manifestaron no querer participar o que en el transcurso de la tarea expresaron no querer seguir jugando fueron excluidos.

El nivel socioeconómico de las familias participantes puede considerarse medio. El nivel educativo de los padres y madres era terciario o universitario completo o
incompleto. Padres y madres trabajaban en actividades ligadas a sus profesiones u oficios, en forma independiente o en relación de dependencia. Algunas madres trabajaban exclusivamente en las tareas del hogar y en el cuidado de sus niños.

En el caso de los niños, los criterios de selección para conformar la muestra fueron la edad y ausencia de trastornos del desarrollo. Esta información se obtuvo por medio de los directivos y personal a cargo de los niños de las instituciones y de los adultos responsables. En los estudios cuasi-experimentales (primeros tres estudios) se trabajó con niños de 30 y 36 meses (dispersión de + – 1 mes). Estas edades fueron seleccionadas siguiendo un criterio teórico, por ser cruciales en el acceso a la comprensión y uso simbólico de diferentes objetos. En el estudio descriptivo-observacional (estudio 4), se trabajó con diáadas conformadas por adulto y niño de entre 24 y 36 meses. En el estudio 5, la muestra estuvo conformada por madres, padres o adultos responsables de niños de hasta 8 años. Los cuestionarios fueron distribuidos en formato papel en las instituciones en donde se realizó el trabajo de campo y en otras instituciones educativas. También fue administrado por formulario de Google con la finalidad de acceder a otras ciudades y provincias del país. En este estudio, la decisión de ampliar el rango etario de los niños se tomó con el fin de obtener información respecto a un tema sobre el que se cuenta con escasos antecedentes en el contexto local.

Estrategia general de recolección y análisis de datos

En los estudios cuasi-experimentales (estudios 1, 2, 2A, 3) las observaciones fueron individuales y tuvieron lugar en salas
disponibles de las instituciones educativas. Los datos fueron registrados por escrito y posteriormente volcados a protocolos para su análisis. La variable dependiente sobre la que se realizaron los análisis estadísticos fue el número de subpruebas correctas. Se tuvo en cuenta la primera elección del niño y se consideraron solo las respuestas intencionales. Es decir, aquellas en que claramente respondía a la consigna, señalaba y/o buscaba el personaje en la habitación. Cada niño podía tener una frecuencia de respuestas correctas o puntaje de 0 a 4. Los análisis estadísticos se realizaron sobre los puntajes.

Se utilizaron pruebas no paramétricas, debido al tamaño de la muestra y a que no se asume una distribución normal. El análisis principal consistió en indagar diferencias en la ejecución de los niños según edad y condición experimental, para lo cual se aplicó la prueba U Mann-Whitney para muestras independientes. También se informan porcentajes de la ejecución para aportar mayor claridad en la exposición de los resultados. Los análisis se realizaron con el software SPSS® 20. Además, se indagó el desempeño individual con base en el criterio de participante exitoso, considerando al participante como tal si realizaba correctamente tres de las cuatro subpruebas de la tarea.

Por otra parte, analizamos los errores de los niños cuando no utilizaban simbólicamente la imagen para resolver la tarea de búsqueda. Así, contabilizamos las búsquedas incorrectas y dentro de estas distinguimos las respuestas perseverativas. Es decir, aquellas en que el niño buscaba en el escondite inmediatamente anterior o en el primer escondite, un error muy frecuente en este tipo de tareas (Schmidt et al., 2007; Sharon y DeLoache, 2003; Suddendorf, 2003). Además, contabilizamos los casos en que los niños no buscaron el personaje o manifestaron que no estaba en la habitación real, sino en la tablet.

En el estudio descriptivo-observacional (estudio 4), las observaciones fueron realizadas en los hogares. Las interacciones que tuvieron lugar durante el armado del
rompecabezas digital fueron registradas en audio y video. Posteriormente, fueron desgrabadas y transcriptas textualmente a protocolos para su posterior codificación y análisis. La transcripción se realizó a modo de diálogo, intentando reflejar la interacción de la manera más natural posible.

Desde un enfoque microgenético, se analizó el conjunto de las interacciones. El análisis de los datos se realizó en etapas. En primer lugar, con base en una revisión de diversas estrategias de análisis y sistemas de codificación empleados en investigaciones previas sobre interacción adulto-niño, construimos inductivamente un sistema de codificación basándonos en el método comparativo constante (Glaser y Strauss, 1967), que permitió captar las propiedades y singularidades del fenómeno en estudio. Tomamos como unidad de codificación las operaciones o conductas no verbales y emisiones verbales con sentido comunicacional de los niños y adultos. Es decir, las intervenciones dirigidas al interlocutor y/o a la resolución de la tarea propuesta. Cada categoría podía ser una emisión únicamente verbal, una emisión verbal acompañada por la manipulación de la imagen o una manipulación de la imagen sin acompañamiento verbal. Así, cada unidad fue codificada según las categorías del sistema construido, de carácter mutuamente excluyente y exhaustivo. Respecto a la confiabilidad del sistema, de las 20 interacciones analizadas, una segunda codificadora trabajó en forma independiente sobre una selección al azar de cinco protocolos. Para evaluar la confiabilidad, además del porcentaje de acuerdo entre codificadoras se calculó el coeficiente Kappa de Cohen.

Se realizaron análisis de frecuencias para indagar la distribución de las categorías de los niños y de los adultos en la interacción. Se analizó la manipulación que implica la interactividad de la pantalla y las emisiones verbales de
niños y adultos, poniendo especial énfasis en el tipo de instrucción que los adultos brindaban a los niños en la tarea.

En una segunda etapa, aplicamos un análisis factorial de correspondencias múltiples desde la escuela francesa (Benzécri, 1976; Lebart et al., 1995; Moscoloni, 2005). Esta técnica permitió considerar simultáneamente todas las variables en estudio, así como detectar y analizar la asociación de estas variables entre sí. Para ello, utilizamos el software SPAD® 5.6 (Système Portable pour l’Analyse de Données). Por último, y en función de los resultados del análisis factorial, realizamos análisis confirmatorios bivariados utilizando la prueba estadística U Mann-Whitney. Se utilizó el software SPSS® 20.

Respecto al estudio ex post facto llevado a cabo mediante un cuestionario (estudio 5), en primer lugar realizamos un análisis descriptivo sobre la tenencia, hábitos y percepción de uso de tecnologías. En segundo lugar, realizamos un análisis multidimensional de los datos, a través de las técnicas de análisis factorial y de clasificación, que permitió considerar simultáneamente todas las variables en estudio, analizar la asociación de estas variables y construir perfiles o grupos de participantes con características similares, en función de sus hábitos y percepción sobre el uso de tecnologías. Para este último análisis utilizamos el programa SPAD® 5.6.

El análisis multidimensional de datos desde la escuela francesa, propuesto para los estudios 4 y 5, constituye un enfoque de análisis relevante en las ciencias sociales, especialmente en psicología, que implica un mayor reconocimiento de la complejidad de los fenómenos en estudio. Desde una lógica exploratoria e inductiva, tiene como principio básico la búsqueda de una estructura presente en los datos. Así, las técnicas empleadas permiten un análisis exhaustivo e integral de la información, al considerar una
gran cantidad de variables de manera simultánea, detectando relaciones que de otro modo serían imperceptibles, lo que permite además la construcción de perfiles o grupos de participantes con características similares (Moscoloni, 2005).
La comprensión simbólica infantil de una imagen digital, 3D e interactiva

Presentación

Los estudios que componen este capítulo tienen como propósito investigar la comprensión simbólica infantil de una imagen digital, 3D e interactiva presentada en una tablet. Específicamente, investigamos evolutivamente en niños de 30 y 36 meses el acceso a la comprensión simbólica de este tipo de imagen; indagamos el impacto de la instrucción del adulto y de la manipulación previa de la imagen por parte del niño en el acceso a la comprensión simbólica de la imagen y comparamos el acceso a la comprensión en función de la edad, la instrucción recibida y la manipulación previa de la imagen. Para ello, adaptamos la tarea de búsqueda de DeLoache con imágenes impresas (DeLoache, 1987; DeLoache y Burns, 1994), en que la investigadora escondía un juguete en una habitación sin que el niño observase, luego le indicaba a través de la imagen dónde se encontraba el juguete y le solicitaba que, con base en esa información, buscara el juguete escondido en la habitación. Aquí, nos interrogamos si los niños utilizaban una imagen digital, 3D e interactiva presentada en una tablet como fuente de información para resolver la tarea de búsqueda. En los estudios que se presentan a continuación, estudiamos el impacto de tres variables: edad, instrucción y manipulación. La edad se varió entre
30 y 36 meses. La *instrucción* consistió en proporcionar (o no) guías verbales e información explícita con el fin de acentuar la intencionalidad conferida a la imagen en la tarea y la correspondencia imagen-habitación. La *manipulación* consistió en permitir (o evitar) que el niño explorara manualmente la *tablet* con la imagen y juegue con ella unos minutos antes de comenzar la tarea.

Tabla 1. Síntesis de los estudios que componen este capítulo

<table>
<thead>
<tr>
<th></th>
<th>Condiciones</th>
<th>Edad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estudio 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Con instrucción sin manipulación</td>
<td>30 meses</td>
</tr>
<tr>
<td></td>
<td></td>
<td>36 meses</td>
</tr>
<tr>
<td>Estudio 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Con instrucción con manipulación</td>
<td>30 meses</td>
</tr>
<tr>
<td></td>
<td></td>
<td>36 meses</td>
</tr>
<tr>
<td>Estudio 2A</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Con instrucción sin manipulación</td>
<td>30 meses</td>
</tr>
<tr>
<td></td>
<td>Con instrucción con manipulación</td>
<td></td>
</tr>
<tr>
<td>Estudio 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Con instrucción sin manipulación</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Con instrucción con manipulación</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sin instrucción con manipulación</td>
<td>36 meses</td>
</tr>
</tbody>
</table>

Como se mencionó en los primeros capítulos, para los niños pequeños, comprender el carácter representacional de un objeto simbólico constituye un desafío cognitivo que se deriva de su naturaleza doble, ya que deben ver al objeto en sí mismo y a través de él la entidad que representa (DeLoache, 1987). Utilizando tareas de búsqueda, diversos estudios demostraron que cuando los niños reciben instrucción comprenden la función simbólica de un objeto tridimensional, como una maqueta, a los 36 meses.
Cuando se trata de objetos bidimensionales, como fotografías impresas y videos, lo logran a los 30 (DeLoache, 1989; DeLoache y Burns, 1994; Troseth y DeLoache, 1998). Inclusive, cuando se trata de una foto digital capturada con una *tablet* lo logran a los 24 meses (Jauck y Peralta, 2016; 2019). Las ventajas de los objetos simbólicos bidimensionales por sobre los tridimensionales se comprenden a la luz de la hipótesis de la doble representación. Los niños más pequeños utilizan la maqueta como objeto concreto y atractivo en sí mismo, lo que les impide ver a través de ella aquello que está representando, mientras que las imágenes generalmente no tienen otra función más que ser una representación, lo que favorece su comprensión simbólica.

Las imágenes digitales 3D e interactivas poseen características distintivas, por lo que no es posible extender a ellas resultados referidos a la comprensión simbólica infantil de otros objetos simbólicos, como fotografías impresas y digitales, videos o maquetas (Sheehan y Uttal, 2016; Troseth *et al*., 2016). Estas imágenes se plasman en un objeto tridimensional, como una *tablet* o un *smartphone*. Además, si bien las imágenes son bidimensionales, pueden proyectarse de modo tridimensional, como es el caso de mapas o aplicaciones. La característica más distintiva es que son interactivas. Responden instantáneamente y en función de las señales que el usuario emite, por lo que el uso de las pantallas táctiles implica manipulación.

Actualmente existen posiciones opuestas sobre el impacto de la manipulación de las imágenes proyectadas en el acceso a su comprensión simbólica temprana (Sheehan y Uttal, 2016; Troseth *et al*., 2016). Por un lado, desde la perspectiva de la representación doble (DeLoache, 1987) la manipulación que implica la interactividad de la pantalla obstaculizaría la comprensión simbólica de las imágenes, al acentuar sus propiedades como objeto
concreto y atractivo en sí mismo (DeLoache y Marzolf, 1992; Uttal et al., 2006; Uttal et al., 2009).

Por el contrario, se ha postulado que la interactividad de las pantallas facilitaría la comprensión simbólica y el aprendizaje, dado que, a diferencia de cualquier otro objeto simbólico, estas imágenes proporcionan respuestas inmediatas y en función de las intervenciones infantiles (Choi y Kirkorian, 2016; Kirkorian et al., 2016; Lauricella et al., 2010; Myers et al., 2016; Roseberry et al., 2014).

La investigación en el área, aún reciente pero que crece a un ritmo acelerado, no presenta resultados claros sobre el impacto de la manipulación de la pantalla en el acceso a la comprensión simbólica de sus imágenes ni del papel que ocupa la instrucción del adulto, por lo que aquí retomamos esta controversia.

Estudio 1

Comparación por edad, 30 vs. 36 meses, con instrucción y sin manipulación

En este estudio investigamos evolutivamente en niños de 30 y 36 meses la comprensión simbólica de una imagen digital, 3D e interactiva presentada en una *tablet*, con instrucción y sin haber manipulado el dispositivo. Adaptando el procedimiento ideado por DeLoache (1987), nos preguntamos si recibiendo instrucción el niño utilizaba este tipo de imagen como fuente de información para resolver la tarea de búsqueda. El análisis se centró en comparar el acceso a la comprensión simbólica de este tipo de imagen en las edades estudiadas.

Conforme a la doble representación (DeLoache, 1987; 2004), hipotetizamos que a los 36 meses los niños acceden a la comprensión simbólica de la imagen, mientras que a los 30 meses aún con instrucción no lo logran.
Método

Participantes: participaron 18 niños de 30 meses –8 niñas y 10 niños– (\(M=30,33; DS=0,76\)) y 21 niños de 36 meses –13 niñas y 8 niños– (\(M=36,38; DS=0,74\)).

Materiales: construimos una habitación (1 m de largo x 70 cm de profundidad x 25 cm de alto) con dos ambientes, living y dormitorio. Los ambientes contenían diversos muebles y objetos que podían ser utilizados como escondites. En el living se encontraban un sillón, un escritorio, una maceta y un baúl; en el dormitorio, una cama, una mesa de luz, una cajonera y una cortina. Además, un ropero junto a una pared diferenciaba ambos ambientes (Figura 1). Se escogió un personaje atractivo para los niños (Mickey) como objeto para esconder.

Figura 1. Fotografía de la habitación de búsqueda y del personaje

Con la asistencia de un ingeniero en sistemas desarrollamos una aplicación, APP (Unity 3D), instalada en una
tablet de 10”, cuya utilización no requiere conexión a Internet. La *app* consiste en un modelo virtual, interactivo y en tres dimensiones de la habitación y contiene una representación del personaje por esconder.

A diferencia de fotografías o videos, la *app* muestra una imagen interactiva que responde físicamente a las señales que el usuario emite. En la imagen es posible desplazar, esconder y buscar el personaje en los diferentes muebles y objetos de la habitación virtual, tal como puede hacerse físicamente en la habitación real. Por tanto, manipulando la imagen es posible abrir las cortinas, mover los almohadones del sillón, buscar debajo de la cama, adentro del ropero, del baúl y de la cajonera y detrás de la maceta. Al acercarse a los diferentes escondites, la aplicación emite un sonido que indica si se encontró o no el personaje. La imagen tiene un alto nivel de similitud perceptual con la habitación real, y respeta la escala y distribución espacial de los ambientes y objetos (ver Figura 2).

![Figura 2. Captura de pantalla de la imagen digital, 3D e interactiva](image-url)
En función de un estudio piloto, se efectuaron modificaciones a la app, tales como ajuste del grado de respuesta de la imagen al usuario, modificación de los muebles utilizados como escondites, incorporación del sonido y de un menú que permite ingresar el nombre de cada niño, registrar sus resultados en la tarea y la ruta de navegación en el espacio virtual.

Así, el diseño de la app permitió adaptar un procedimiento ya utilizado y con una sólida base teórica y empírica (DeLoache, 1987) a una pregunta de investigación novedosa. La app fue diseñada de forma tal que en futuras investigaciones sea posible realizar actualizaciones, modificar y/o introducir variables de interés.

Procedimiento: adaptamos la clásica tarea de búsqueda de DeLoache (DeLoache, 1987; DeLoache y Burns, 1994). La investigadora escondía el personaje en la habitación sin que el niño observase, luego le mostraba navegando en la imagen digital, 3D e interactiva dónde había sido escondido y el niño debía buscarlo con base en la información proporcionada por la imagen.

El procedimiento constaba de dos fases: familiarización y prueba.

1. Fase de familiarización: su propósito era familiarizar al niño con los materiales y actividad por realizar. La investigadora le presentaba al niño el personaje (Mickey) y su casa (la habitación) y le decía que al personaje le gustaba jugar a las escondidas. Luego nombraba los diferentes escondites de la habitación, colocando al personaje en cada uno de ellos y diciendo: “Este es Mickey (mostrando el personaje) y esta es su casa. A Mickey le encanta jugar a las escondidas y le gusta esconderse en todos estos muebles... (nombrándolos)”. Posteriormente, presentaba al niño la tablet con la imagen y explicitaba la correspondencia entre la imagen y la habitación: “Mirá, acá en la
tablet también está Mickey y su casa; también tiene todos estos muebles (nombrándolos) donde puede esconderse”. Asimismo, explicitaba la intención conferida a la imagen en la tarea: “La *tablet* te va a decir dónde está Mickey”. A continuación, realizaba una demostración en la que escondía el personaje navegando en la imagen y luego escondía el personaje en el mismo lugar de la habitación real: “Ahora vamos a poner a Mickey en el mismo lugar, pero en su casa”. A continuación, realizaba el procedimiento inverso, escondiendo el personaje primero en la habitación real y luego en la imagen: “Ahora Mickey se quiere esconder acá en su casa, ¿vamos a ponerlo? ¡Muy bien! Ahora vamos a esconderlo en el mismo lugar pero en la *tablet*”. Este procedimiento permitía al niño observar cómo interactuar con la imagen.

2. Fase de prueba: consistía en esconder el personaje en la habitación real sin que el niño observase. Luego, a la vista del niño, se escondía el personaje navegando en la imagen digital, 3D e interactiva. A continuación, se le solicitaba que con base en esa información lo buscara en la habitación real. La consigna era la siguiente: “Mientras vos te quedas acá, voy a esconder a Mickey en algún lugar de su casita y vos vas a buscarlo en el lugar que yo te voy a mostrar en la *tablet*, acordate de que la *tablet* te va a servir para saber dónde está Mickey”. Posteriormente, a la vista del niño, la experimentadora escondía el personaje navegando en la imagen y le decía: “Acá está escondido Mickey, ¡vamos a buscarlo!”.

El procedimiento se repetía cuatro veces con cada participante (cuatro subpruebas), utilizando escondites distintos: debajo de la cama, detrás de la cortina, adentro del baúl y detrás de los almohadones del sillón. El orden de presentación de los escondites fue contrabalanceado entre los participantes,
para controlar que su elección no respondiera a un aprendizaje durante la tarea.

En el transcurso de la tarea, la investigadora proporcionaba instrucción al niño, consistente en guías verbales e información explícita para acentuar la intención con que se utilizaba la imagen y la correspondencia imagen-habitación. Si el niño realizaba una subprueba de manera incorrecta, la investigadora buscaba el personaje en la habitación diciendo: “La tablet te mostró que estaba acá. Acordate de que la tablet te dice dónde está Mickey. Viste que las dos casitas son iguales”. En caso de que el niño realizara una subprueba correctamente expresaba: “¡Muy bien (nombre del niño)! Viste que la tablet te dice dónde está Mickey”. En caso de que luego de darle la consigna el niño se demorara en responder, la investigadora expresaba: “Acordate de que la tablet te mostró dónde se escondió Mickey, ¿dónde te mostró?”, instando a que el niño busque el personaje.

Figura 3. Fotografías de la tarea de búsqueda
Resultados y discusión

Se encontraron diferencias significativas entre las edades estudiadas ($U=119,00; p<.05$). Como se observa en el Gráfico 1, los niños de 30 meses respondieron correctamente en un 52,78% de las subpruebas, mientras que los de 36 meses lo hicieron en un 76,19%.

Respecto al desempeño individual, nueve de los 18 participantes de 30 meses alcanzaron el criterio de participante exitoso (tres subpruebas correctas de las cuatro), mientras que a los 36 meses 17 de los 21 niños lo alcanzaron.

Los errores cometidos por los niños consistieron en no buscar o buscar el personaje en un escondite incorrecto. Dentro de estos últimos, distinguimos los errores perseverativos, o sea aquellas búsquedas en el escondite
inmediatamente anterior o en el primer escondite, mientras que en otros casos indicaron que el personaje estaba en la imagen de la tablet y no en la habitación real. La Tabla 2 muestra la frecuencia y porcentaje de los tipos de error por edad.

<table>
<thead>
<tr>
<th>Tipo de error</th>
<th>30 meses</th>
<th></th>
<th>36 meses</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>f</td>
<td>%</td>
<td>f</td>
<td>%</td>
</tr>
<tr>
<td>Búsqueda incorrecta (no perseverativa)</td>
<td>11</td>
<td>32,35</td>
<td>10</td>
<td>50</td>
</tr>
<tr>
<td>Perseverativo</td>
<td>9</td>
<td>26,48</td>
<td>7</td>
<td>35</td>
</tr>
<tr>
<td>No busca</td>
<td>11</td>
<td>32,35</td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>Busca en tablet</td>
<td>3</td>
<td>8,82</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>34</td>
<td>100</td>
<td>20</td>
<td>100</td>
</tr>
</tbody>
</table>

Los resultados de este estudio muestran diferencias evolutivas en el desarrollo de la comprensión simbólica de una imagen digital, 3D e interactiva. Cuando reciben instrucción y sin haber manipulado la imagen proyectada por el dispositivo, los niños comprenden la función simbólica de este tipo de imagen a los 36 meses, mientras que a los 30 su desempeño es significativamente menor.

Estos resultados son análogos a los reiteradamente reportados en investigaciones sobre comprensión simbólica de objetos tridimensionales. En esos estudios se encontró que cuando reciben instrucción, los niños comprenden la función simbólica de una maqueta a los 36 meses, pero no a los 30 (DeLoache, 1987; 1989; Peralta y Salsa, 2003a). Por tanto, los resultados del estudio 1 confirman tanto las predicciones derivadas de la hipótesis de la doble representación como nuestras hipótesis. La imagen digital, 3D
e interactiva presentada en la *tablet* podría equipararse a un objeto real y tridimensional, y presentar dificultades similares a las de una maqueta para su comprensión simbólica temprana. La interactividad y tridimensionalidad de la imagen y del dispositivo aumentarían su impacto como objeto concreto, lo que dificultaría el acceso a la comprensión simbólica en los más pequeños a pesar de haber recibido instrucción en la tarea.

Estudio 2

Comparación por edad, 30 vs. 36 meses, con instrucción y manipulación

En este estudio investigamos evolutivamente en niños de 30 y 36 meses el acceso a la comprensión simbólica de una imagen digital, 3D e interactiva cuando los niños reciben instrucción por parte del adulto y manipulan previamente el dispositivo.

El estudio 1 mostró que los niños comprenden este tipo de imagen a los 36 meses cuando reciben instrucción y no manipulan la imagen presentada en la *tablet*. Dado que existen posiciones opuestas sobre el impacto de la manipulación que involucra la interactividad de la pantalla en el acceso a la comprensión simbólica de la imagen, aquí nos interrogamos si la manipulación favorecería u obstruiría el acceso a su comprensión simbólica variando también la edad.

De acuerdo a la perspectiva de la doble representa-
ción (DeLoache, 1987; 2004), hipotetizamos que aun reci-
biendo instrucción, tanto a los 30 como los de 36 meses, si los niños manipulan previamente la imagen proyectada por el dispositivo, no acceden a su comprensión simbólica.
Método

Participantes: participaron 17 niños de 30 meses -12 niñas y 5 niños– ($M=30,07; DS=0,73$) y 18 niños de 36 meses -9 niños y 9 niñas– ($M=36,06; DS=0,72$).

Materiales: se utilizaron los materiales descriptos en el estudio anterior.

1. Fase de familiarización + manipulación: en primer lugar, se familiarizaba al niño con la actividad y los materiales. A diferencia del estudio anterior, en primer lugar se presentaba la tablet con la app de la imagen digital, 3D e interactiva, en ausencia de la habitación real. Se mostraba el personaje y la habitación virtual. Se expresaba al niño que esa era la casa del personaje, a quien le gustaba jugar a las escondidas. Se nombraban y señalaban todos los escondites, diciendo: “Mirá, acá está Mickey (señalando el personaje) y esta es su casa. A Mickey le encanta jugar a las escondidas y le gusta esconderse en todos estos lugares... (nombrándolos)” Luego, la investigadora realizaba una demostración, en la que escondía el personaje debajo de la cama y mostraba al niño cómo podía desplazar, esconder y buscar el personaje en la imagen digital, 3D e interactiva. Se mostraba además cómo explorar en los ambientes, muebles y objetos de la imagen, diciéndole: “¡Mirá, podemos esconderlo abajo de la cama! ¡Así! ¡Y también podemos buscarlo y ver qué hay en estos otros muebles! ¡Qué bueno!” Posteriormente, se proponía al niño que deslice, esconda y busque el personaje en los diferentes ambientes y
muebles, diciendo: “¿Te animas a esconderlo y buscarlo vos?” “¿Vamos a esconderlo otra vez?”.
Este procedimiento tenía como objetivo que el niño manipulara y jugara con la imagen de la tablet, desplazando, escondiendo y buscando el personaje en los diferentes escondites. El tiempo aproximado de juego y manipulación era de 5 minutos.

2. Fase de prueba: se invitaba al niño a dirigirse a una sala contigua de la institución educativa, donde se encontraba la habitación y el personaje real. Allí, la experimentadora explicitaba la correspondencia imagen-habitación y la intención de la imagen en la tarea. Posteriormente, se realizaba una demostración y por último tenía lugar la prueba. Las explicaciones y consignas proporcionadas al niño fueron las mismas que en el estudio 1.
El procedimiento constaba de cuatro subpruebas con cada participante, utilizando escondites distintos: debajo de la cama, detrás de la cortina, adentro del baúl y detrás de los almohadones del sillón. El orden de presentación de los escondites fue contrabalanceado entre los participantes. Tal como en el estudio 1, en el transcurso de la tarea la investigadora proporcionaba instrucción al acentuar la intención conferida a la imagen en la tarea y su correspondencia con la habitación.

Resultados y discusión

Los niños de 30 meses respondieron correctamente en un 23,52% de las subpruebas y los de 36 meses, en un 50% (Gráfico 2). Si bien se encontraron diferencias significativas entre las edades estudiadas (U=96,000; p<.05), cuando
los niños manipularon previamente la imagen presentada en la tablet, aun recibiendo instrucción, su desempeño en la tarea fue muy bajo, tanto a los 30 como a los 36 meses. A su vez, el desempeño fue significativamente menor a los 30 meses.

Respecto al desempeño individual, tres de los 17 niños de 30 meses alcanzaron el criterio de participante exitoso (tres de las cuatro subpruebas correctas); mientras que a los 36 meses, nueve de los 18 niños lo alcanzaron.

En relación con las dificultades de los niños para utilizar simbólicamente la imagen y resolver la tarea de búsqueda, la Tabla 3 muestra el análisis de los tipos de error por edad.
Tabla 3. Tipos de error en niños de 30 y 36 meses, con instrucción y manipulación

<table>
<thead>
<tr>
<th>Tipo de error</th>
<th>30 meses</th>
<th></th>
<th>36 meses</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>f</td>
<td>%</td>
<td>f</td>
<td>%</td>
</tr>
<tr>
<td>Búsqueda incorrecta (no perseverativa)</td>
<td>19</td>
<td>36,54</td>
<td>21</td>
<td>58,34</td>
</tr>
<tr>
<td>Perseverativo</td>
<td>18</td>
<td>34,62</td>
<td>12</td>
<td>33,33</td>
</tr>
<tr>
<td>No busca</td>
<td>14</td>
<td>26,92</td>
<td>3</td>
<td>8,33</td>
</tr>
<tr>
<td>Busca en tablet</td>
<td>1</td>
<td>1,92</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>52</td>
<td>100</td>
<td>36</td>
<td>100</td>
</tr>
</tbody>
</table>

Los resultados alcanzados son consistentes con los reportados sobre la comprensión simbólica de objetos tridimensionales (DeLoache y Marzolf, 1992; Uttal et al., 2006; Uttal et al., 2009) y confirman nuestras hipótesis. La manipulación previa de la imagen de la tablet aumenta sus propiedades como objeto concreto y atractivo en sí mismo, lo cual dificulta en los niños pequeños su comprensión como símbolo.

Estudio 2A

El impacto de la manipulación, 30 meses

Aquí nos propusimos indagar el impacto de la manipulación en la comprensión simbólica de este tipo de imagen en niños de 30 meses.

Los primeros dos estudios revelaron que a los 30 meses los niños no acceden a la comprensión simbólica de la imagen, aunque reciban instrucción en la tarea. Se observó además que el desempeño es aún menor cuando manipulan previamente la imagen. Aquí, retomando los datos de estos estudios, nos interrogamos por el impacto
de la manipulación previa de la imagen en el acceso a su comprensión simbólica en niños de 30 meses, manteniendo la instrucción en la tarea.

Comparamos dos condiciones experimentales: 1. Con instrucción-sin manipulación; 2. Con instrucción-con manipulación. Se compararon dos grupos de niños de 30 meses de edad según condición. Los datos del primer grupo provienen del estudio 1, en que los niños recibieron instrucción y no manipularon previamente la imagen (con instrucción-sin manipulación). Los datos del segundo grupo provienen del estudio 2, en que los niños recibieron instrucción y manipularon la imagen previamente (con instrucción-con manipulación).

Resultados y discusión

El análisis se centró en comparar la ejecución de ambos grupos e indagar el impacto de la manipulación previa de la imagen en el acceso a su comprensión simbólica.

En la condición 1 (con instrucción-sin manipulación), los niños respondieron correctamente el 52,78% de las subpruebas, mientras que en la condición 2 (con instrucción-con manipulación), lo hicieron en un 23,52% (ver Gráfico 3). Se encontraron diferencias significativas entre las condiciones estudiadas ($U=87,000; p<.05$).
Gráfico 3. Subpruebas correctas por condición experimental

Los resultados muestran que a los 30 meses no acceden a la comprensión simbólica de la imagen. Además, su desempeño disminuye significativamente cuando manipulan la imagen previamente. Conforme a la hipótesis de la doble representación (DeLoache, 1987), en los niños de la condición 1, la interactividad y tridimensionalidad de la imagen y del dispositivo aumentó su impacto como objeto concreto, aun sin manipular la imagen previamente, lo que dificultó su comprensión como símbolo. En la condición 2, la manipulación previa de la imagen aumentó más aún sus propiedades como objeto concreto y atractivo en sí mismo, disminuyendo el desempeño simbólico de los niños en esta condición.
Estudio 3

El impacto de la manipulación y de la instrucción, 36 meses

En este estudio indagamos el impacto tanto de la manipulación como de la instrucción en la compresión simbólica de este tipo de imagen en niños de 36 meses.

En los primeros dos estudios, en los que los niños recibieron instrucción y variamos la manipulación de la imagen, encontramos que los niños de 36 meses accedieron a la comprensión simbólica de la imagen proyectada en la tablet cuando no la manipularon previamente. A partir de estos resultados, en este estudio investigamos el impacto tanto de la manipulación como de la instrucción en el acceso a la comprensión simbólica.

Se conformaron tres grupos de niños de 36 meses de edad según condición. Los datos del primer grupo provienen del estudio 1, en el que los niños recibieron instrucción y no manipularon previamente la imagen (con instrucción-sin manipulación). Los datos del segundo grupo provienen del estudio 2, en el que los niños también recibieron instrucción pero manipularon la imagen previamente (con instrucción-con manipulación). El tercer grupo estuvo conformado por un nuevo grupo de niños que manipularon previamente la imagen pero no recibieron instrucción en la tarea (sin instrucción-con manipulación). Esta condición se incorporó en este estudio con el fin de investigar en niños de 36 meses el impacto de la instrucción en el acceso a la comprensión simbólica de la imagen y su interjuego con la manipulación de la imagen.
Método

 Participantes: participaron 58 niños –31 niñas y 27 niños– de 36 meses de edad ($M=36,22; DS=0,750).

 Materiales: se utilizaron los materiales descriptos en el estudio 1.

 Procedimientos: en las tres condiciones experimentales primero se familiarizaba al niño con la actividad y los materiales, luego se escondía el personaje en la habitación y el niño debía buscarlo con base en la información proporcionada por la imagen. El procedimiento variaba según condición experimental:

 1. Con instrucción-sin manipulación: el procedimiento de las fases de familiarización y prueba fue el descripto en el estudio 1.
 2. Con instrucción-con manipulación: el procedimiento constaba de dos fases, familiarización + manipulación y prueba, y fue el descripto en el estudio 2.
 3. Sin instrucción-con manipulación: el procedimiento también constaba de dos fases: familiarización + manipulación y prueba. La única diferencia respecto de la condición anterior fue que después de proporcionar la consigna al niño no se acentuaba la intencionalidad conferida a la imagen en la tarea ni la correspondencia imagen-habitación, y las respuestas o feedback ante la ejecución del niño eran neutras.

 En las tres condiciones experimentales, y tal como en los estudios anteriores, se realizaron cuatro subpruebas con cada participante, utilizando escondites distintos: debajo de la cama, detrás de la cortina, adentro del baúl y detrás de los almohadones del sillón. El orden de presentación de los escondites fue contrabalanceado entre los participantes.
Resultados y discusión

Encontramos que en la condición 1, con instrucción-sin manipulación, los niños respondieron correctamente el 76,19% de las subpruebas. En la condición 2, con instrucción-con manipulación, respondieron correctamente el 50% de las subpruebas, y en la condición 3, sin instrucción-con manipulación, respondieron correctamente el 55,26% (ver Gráfico 4).

Se encontraron diferencias significativas entre las condiciones 1 y 2, con instrucción-sin manipulación y con instrucción-con manipulación ($U=115,00; \ p<.05$). Los niños utilizaron la imagen como fuente de información para resolver la tarea de búsqueda cuando recibieron instrucción y no manipularon previamente la imagen, mientras que cuando la manipularon su desempeño disminuyó significativamente, aun recibiendo instrucción por parte de la investigadora. Si bien la ejecución de los niños de la condición 1 (con instrucción-sin manipulación) fue considerablemente superior a la de los niños de la condición 3 (sin instrucción-con manipulación), las diferencias no alcanzaron significación estadística ($U=138,00; \ p=.082$). Tampoco se encontraron diferencias significativas entre las condiciones 2 y 3, con instrucción-con manipulación y sin instrucción-con manipulación ($U=157,500; \ p=.674$). Por tanto, en las condiciones en que los niños manipularon previamente la imagen, estos no accedieron a su comprensión simbólica, independientemente de la instrucción recibida en la tarea.
Respecto al desempeño individual, en la condición 1 (con instrucción-sin manipulación), 17 de los 21 niños alcanzaron el criterio de participante exitoso. En la condición 2 (con instrucción-con manipulación), nueve de los 18 niños alcanzaron el criterio de participante exitoso, y en la condición 3 (sin instrucción-con manipulación), ocho de los 19 lo consiguieron.

En cuanto a las dificultades para utilizar simbólicamente la imagen y resolver la tarea de búsqueda, la Tabla 4 muestra los tipos de error por condición experimental.
Tabla 4. Tipos de error en niños de 36 meses, según condición experimental

<table>
<thead>
<tr>
<th>Tipo de error</th>
<th>Con instrucción– sin manipulación</th>
<th>Con instrucción– con manipulación</th>
<th>Sin instrucción– con manipulación</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>f</td>
<td>%</td>
<td>f</td>
</tr>
<tr>
<td>Búsqueda incorrecta (no perseverativa)</td>
<td>10</td>
<td>50</td>
<td>21</td>
</tr>
<tr>
<td>Perseverativo</td>
<td>7</td>
<td>35</td>
<td>12</td>
</tr>
<tr>
<td>No busca</td>
<td>3</td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL</td>
<td>20</td>
<td>100</td>
<td>36</td>
</tr>
</tbody>
</table>

En suma, los resultados indican que los niños comprenden la función simbólica de la imagen digital, 3D e interactiva presentada en la *tablet* a los 36 meses cuando reciben instrucciones explícitas y no manipulan la imagen previamente. Si se mantiene la instrucción, pero los niños manipulan la imagen, su desempeño disminuye significativamente.

Conforme a la hipótesis de la doble representación (DeLoache, 1987), y de modo similar a lo que ocurre con objetos tridimensionales (Chiong y DeLoache, 2012; DeLoache y Marzolf, 1992; Gelman *et al*., 2005; Tare *et al*., 2010; Uttal *et al*., 2009), la manipulación de la imagen de la *tablet* aumenta su impacto como objeto concreto y atractivo en sí mismo, lo que obstaculiza su comprensión y uso simbólico.

Discusión general

El propósito de los estudios presentados en este capítulo consistió en investigar la comprensión simbólica infantil de una imagen digital, 3D e interactiva presentada en una
tablet, variando la edad, instrucción y manipulación. Para ello, adaptamos el procedimiento ideado por DeLoache (1987) e investigamos si los niños utilizaban este tipo de imagen como fuente de información para resolver la tarea de búsqueda. En el estudio 1, investigamos evolutivamente en niños de 30 y 36 meses la comprensión simbólica de la imagen, al recibir instrucción y sin manipular el dispositivo. En el estudio 2, también investigamos evolutivamente en niños de 30 y 36 meses la comprensión simbólica de la imagen. Aquí, los niños recibieron instrucción, pero además manipularon previamente la imagen presentada en el dispositivo. En el estudio 2A, indagamos el impacto de la manipulación previa de la imagen en su comprensión simbólica en niños de 30 meses. Por último, en el estudio 3 investigamos el impacto tanto de la manipulación previa de la imagen como de la instrucción del adulto en la comprensión simbólica de la imagen en niños de 36 meses.

En su conjunto, los resultados muestran que los niños comprenden la imagen digital, 3D e interactiva a los 36 meses cuando reciben instrucción, siempre y cuando no manipulen la imagen previamente. Los niños de 30 meses no accedieron a su comprensión y uso simbólico en condición alguna, y a su vez su desempeño disminuyó cuando manipularon previamente la imagen. En los niños de 36 meses, la manipulación previa de la imagen también impactó negativamente en su comprensión como símbolo, independientemente de la instrucción recibida. Investigaciones previas, utilizando tareas de búsqueda, encontraron que los niños comprenden la función simbólica de una maqueta a los 36 meses cuando reciben guías verbales y apoyo explícito en la tarea y no la manipulan previamente, mientras que cuando se trata de fotos y videos ya a los 30 meses utilizan la imagen para resolver la tarea (DeLoache,
Así, la imagen digital, 3D e interactiva proyectada en la tablet podría equipararse con un objeto real, al presentar dificultades similares a las de un objeto concreto tridimensional para su comprensión simbólica. La manipulación que implica la interactividad de la pantalla, la tridimensionalidad de la imagen y del soporte en que se presenta (tablet) aumentarían su impacto como objeto concreto, y dificultaría el acceso a su comprensión simbólica.

Estos resultados difieren de los de Jauck y Peralta (2016; 2019), en que ya a los 24 meses los niños utilizaron una imagen de una tablet como fuente de información para resolver la tarea de búsqueda. La diferencia en los resultados radica en las características de la imagen utilizada, ya que se trataba de una fotografía digital capturada con una tablet que no tenía la particularidad de ser interactiva ni tridimensional, como la diseñada y empleada en la presente investigación.

En cuanto a las dificultades de los niños para utilizar simbólicamente la imagen y resolver la tarea, el análisis de los tipos de error cometidos permitió dar cuenta de la perspectiva o teoría del propio niño frente al problema plantead. Si bien el concepto de error puede conducir a la idea de que el fenómeno es abordado desde la perspectiva adulta, centrándose en el déficit infantil, cabe destacar que en este trabajo lo empleamos en un sentido muy diferente. Desde la perspectiva infantil no se trata de un error, sino de su estrategia o teoría frente a la tarea propuesta. Así, con el propósito de estudiar la génesis y el cambio en el fenómeno estudiado, analizamos evolutivamente –y considerando las diferentes variables en estudio– qué hicieron los niños cuando no resolvieron la tarea de búsqueda.
En este sentido, aunque no encontramos diferencias estadísticamente significativas por condición experimental, a nivel descriptivo encontramos diferencias interesantes por edad. A los 30 meses, en ocasiones los niños indicaron que el personaje estaba en la imagen y no en la habitación, lo que denota su dificultad para comprender la naturaleza doble de la imagen. Para estos niños, el personaje solo podía estar en la imagen y no lograban captar que esta era el símbolo de la entidad que representaba. Así, cuando se les solicitaba que buscaran el personaje en la habitación con base en la información proporcionada por la imagen de la tablet, iban a buscarlo al dispositivo, es decir, donde lo habían visto esconder, y expresaban explícitamente que Mickey estaba allí. Sin embargo, esto se encontró con una frecuencia muy baja, mientras que los otros tipos de error –buscar en un escondite incorrecto, respuestas perseverativas y no buscar el personaje– se encontraron en similares proporciones en las condiciones estudiadas.

En cuanto a los 36 meses y en las tres condiciones experimentales, el error más frecuente fue buscar el personaje en un escondite incorrecto. En segundo lugar, se encontraron respuestas perseverativas y, por último, no buscar el personaje. A esta edad, ningún niño indicó que el personaje se encontraba en la imagen y no en la habitación.

Así, se observa una progresión por la que a los 30 meses los niños cometen diferentes tipos de error en similares proporciones (a excepción de indicar que el personaje se encontraba en la tablet, que se encontró con menor frecuencia), mientras que a los 36 meses prácticamente en todas las subpruebas los niños buscaron el personaje, aunque cometiendo errores, disminuyeron los casos en que no intentaron buscarlo y fueron nulos los casos en que
indicaron que se encontraba en la imagen y no en la habitación. Esta progresión podría indicar que a los 36 meses, aun cuando no resuelvan la tarea, los niños se encuentran en un período crítico en que comienzan a comprender la naturaleza doble de la imagen (es por esto que buscan el personaje aunque se equivoquen y son nulos los casos en que indican que se encuentra en la imagen de la tablet). Asimismo, tal como señaló DeLoache en estudios con imágenes impresas (DeLoache y Burns, 1994; DeLoache y Marzolf, 1992), la preeminencia de errores en que los niños buscan el personaje en un escondite incorrecto indicaría que estos niños comprenden la imagen en sí misma pero aún no la toman como una representación específica de la habitación. Así, estos niños pueden identificar a Mickey y a los diferentes muebles empleados como escondites tanto en la imagen como en la habitación, e incluso comprenden la intención con que se emplea la imagen en la tarea. Sin embargo, no se dan cuenta, a pesar de la información que reciben, de que la imagen les informa sobre la ubicación actual de ese personaje y en un escondite en particular. Así, la especificidad representacional constituye un hito importante en el desarrollo simbólico infantil, siendo de mayor complejidad y en un momento posterior al de la comprensión de representaciones genéricas.

En cuanto a las respuestas perseverativas, si bien no fueron las más frecuentes, se encontraron en gran proporción y no experimentaron cambios por edad o condición estudiada. En consonancia con otras investigaciones (Schmidt et al., 2007; Suddendorf, 2003), este tipo de respuestas se vincularía a fallas en el control inhibitorio. Sin embargo, en la tarea aquí planteada es poco probable que las respuestas perseverativas surjan de un problema en la inhibición de la respuesta motora. La respuesta involucrada en la tarea no es un simple acto motor, dado que para resolver la
tarea los niños debían caminar desde donde se encontraba la *tablet* hasta la habitación, y la acción variaba según el escondite (por ejemplo, mirar detrás de las cortinas o abrir un baúl). La dificultad surgiría a nivel cognitivo: en cada subprueba posterior a la inicial, los niños debían actualizar la representación de la ubicación del personaje en la imagen y emplearla simbólicamente para encontrarlo en la habitación, inhibiendo la última representación. Por tanto, una falla en la inhibición de la representación más reciente, que probablemente era la más sobresaliente y accesible, conducía a una búsqueda perseverante.

En suma, los resultados confirman nuestras predicciones derivadas de la hipótesis de la doble representación (DeLoache, 1987). Cuando el niño manipula la imagen utilizándola como juego en sí mismo, probablemente se acentúan sus propiedades como objeto concreto, lo que bloquea el posterior acceso a su comprensión simbólica (DeLoache y Marzolf, 1992; Uttal *et al.*, 2006; Uttal *et al.*, 2009). Además, esta manipulación puede generar expectativas sobre el uso del dispositivo como forma de entretenimiento y dificultar su posterior utilización como símbolo (Sheehan y Uttal, 2016). Así, en las condiciones en que los niños de 36 meses manipularon la imagen antes de realizar la tarea, recibiendo o no instrucción, su desempeño fue similar al de los niños de 30 meses que recibieron instrucción en la tarea, pero no manipularon la imagen.
Interacción entre adultos y niños con un juego digital e interactivo presentado en una tablet

Presentación

En el mercado es notoria la proliferación de aplicaciones diseñadas, o al menos publicitadas, para que los niños aprendan y se diviertan. Numerosos juegos y libros de lectura tradicionales cuentan ahora también con su versión digital e interactiva. Tal es el caso de los rompecabezas y los juegos de memoria, de aprendizaje de colores, números y letras, entre tantos otros. Así, dispositivos tecnológicos táctiles, como tablets y smartphones, tienen una presencia cada vez mayor y suelen mediar las interacciones de los niños con pares y adultos, tanto en contextos lúdicos como de aprendizaje.

En este marco, numerosas investigaciones indagaron la interacción y aprendizaje mediado por pantallas. En su mayoría, se centraron en comparar el aprendizaje de palabras, letras y conceptos a través de imágenes impresas y digitales (Evans et al., 2017; Kirkorian et al., 2016; Raynaudo y Peralta, 2019; Roseberry et al., 2014; Strouse y Ganea, 2017; Willoughby et al., 2015). También se analizó la interacción materno-infantil en situaciones de lectura de cuentos mediada por dispositivos tecnológicos en comparación con libros tradicionales (Chiong et al., 2012; Krcmar y Cingel, 2014; Munzer et al., 2019; Parish-Morris et al., 2013). Recientemente, se indagó el juego entre niños
cualquier forma, durante el modelo o analógica (Nilsen et al., 2018).

Se encontró que cuando las madres leyeron libros electrónicos dialogaron más sobre la manipulación y características físicas del dispositivo, haciendo menos preguntas y comentarios sobre el contenido. Además, si bien la interactividad de la imagen fomentó el interés y la motivación por la actividad, también distrajo a los participantes. Así, la lectura de cuentos en formato electrónico dificultó tanto la lectura dialógica como la posterior comprensión de la historia por parte del niño (Krcmar y Cingel, 2014; Parish-Morris et al., 2013). Asimismo, diversos estudios destacaron la guía, andamiaje o instrucción adulta como factor clave para el aprendizaje infantil, más allá del soporte con que se enseñe (Eisen y Lillard, 2020; Neumann, 2017; Raynaudo y Peralta, 2019). En suma, estos estudios sugieren que la interacción del niño con pares y adultos reviste características particulares cuando la actividad está presentada en un dispositivo tecnológico. Por tanto, los artefactos que median la actividad modifican la estructura de la interacción (Nilsen et al., 2018).

A pesar de estos valiosos hallazgos, aún existen varios interrogantes en torno a la interacción entre adultos y niños con dispositivos tecnológicos. En este sentido, no encontramos estudios llevados a cabo en los hogares, ni que aborden la interacción materna y paterna infantil en actividades que no refieran al aprendizaje o lectura de cuentos.

En este marco, en el estudio 4 nos interrogamos sobre las características que adopta la interacción entre adultos y niños en el contexto cotidiano de sus hogares cuando se presenta en una tablet un juego digital e interactivo que implica la resolución de un problema.
Estudio 4

El armado de un rompecabezas digital

El objetivo de este estudio fue explorar y analizar las características que presenta la interacción entre adultos y niños con un juego digital e interactivo que implica la solución de un problema, específicamente el armado de un rompecabezas. Además, indagamos la tenencia y hábitos de uso de dispositivos tecnológicos en los hogares de los participantes y analizamos, desde una perspectiva multidimensional, las variaciones de la interacción niño-adulto según tenencia y hábitos de uso de dispositivos tecnológicos en el hogar.

Método

Participantes: veinte adultos de entre 24 y 39 años (M=32,3) con sus niños, de entre 2 y 3 años (M=30.85 meses). La mitad de las diáadas estuvo conformada por niñas y la otra mitad por niños. Respecto a los adultos, considerando que en la mayoría de los estudios sobre desarrollo infantil participan solo mamás, e intentando no reproducir estereotipos de género que delegan el cuidado y la enseñanza de los niños exclusivamente a las mujeres, en esta investigación invitamos a participar tanto a madres como a padres. Sin embargo, accedió a participar solo un papá, que formó parte de la muestra. Respecto al nivel educativo, siete adultos tenían estudios secundarios y 13, terciarios o universitarios. En cuanto a su ocupación, 14 trabajaban en sus profesiones o en relación de dependencia y dos eran estudiantes, mientras que cuatro madres trabajaban exclusivamente en las tareas del hogar y cuidado de sus niños.

Materiales: empleamos una tablet de 10” con una aplicación de un rompecabezas disponible en el mercado para
ser descargada de una tienda de aplicaciones. La aplicación fue seleccionada por ser apropiada para la edad y contener imágenes de animales y objetos familiares para armar, de las cuales seleccionamos un gato, un perro y un caballo. Además, la aplicación permitía regular la complejidad de la tarea por cantidad de piezas y por selección del fondo en que podía armarse el rompecabezas. En un fondo se observaba el contorno de la pieza y el dibujo para encastrar en blanco y negro, en otro podía verse solo el contorno de la pieza para encastrar, mientras que otro fondo era en blanco. Además, la aplicación presentaba el recurso de un personaje, Nemo, que al tocarlo ubicaba la pieza en el lugar correcto.

También utilizamos un cuestionario denominado “Tecnologías en los hogares y su uso por parte de niños (0-8 años) en Argentina”. Se trata de una traducción y adaptación del cuestionario “A Common Sense Media” (Rideout, 2013), que indaga la tenencia, hábitos y percepción de uso de dispositivos tecnológicos en los hogares. Para este estudio, incorporamos una pregunta referida a la frecuencia con que los niños armaban rompecabezas, tanto analógicos como digitales.

Procedimiento: se realizaron 20 observaciones seminaturalísticas en los hogares de los participantes. Al llegar al hogar, con la finalidad de familiarizar a los participantes con la situación, la investigadora proponía al niño que le mostrara sus juguetes y jugaran juntos unos minutos, mientras el padre o madre presenciaba o participaba del juego. Luego, se presentaba la tablet, se preguntaba al niño si solía usar la tablet o el celular y se le proponía que jugara con su mamá o su papá.

La tarea consistía en el armado de tres rompecabezas. Al adulto se le recordaba el propósito de la investigación y se le daba la siguiente consigna: “Te voy a pedir que
armen juntos y ayudes a –nombre del niño– en el armado de tres rompecabezas: este perro, este gato y este caballo” (señalando explícitamente las imágenes que se requería armar). Además, se le enseñaba el manejo de la aplicación y las funciones que permitían regular la complejidad de la tarea. Respecto a esto, no se transmitió consigna alguna, por lo que el adulto podía regularla según lo considerara. Por último, se le solicitaba que completara el cuestionario referido.

Las interacciones fueron registradas en audio y video. Luego fueron desgrabadas y transcriptas textualmente a protocolos para su posterior codificación y análisis. La transcripción se realizó a modo de diálogo, para reflejar la interacción de la manera más natural posible.

Estrategia de análisis: las interacciones fueron analizadas y descriptas desde un enfoque microgenético. En primer lugar, consultamos estrategias de análisis y sistemas de codificación empleados en investigaciones que indagaron la interacción entre adultos y niños en diferentes contextos y tareas (Gariboldi y Salsa, 2018; Jauck et al., 2015; Mascareño et al., 2017; Ninio y Bruner, 1978; Peralta, 1995, 1997; Sartori et al., 2021; Wood et al., 1976).

Posteriormente, construimos inductivamente un sistema de codificación con base en el método comparativo constante, que permitió captar las singularidades del fenómeno aquí estudiado (Glaser y Strauss, 1967). Tomamos como unidad de codificación las conductas no verbales y emisiones verbales con sentido comunicacional de los niños y adultos. Las categorías construidas permitieron analizar si se trataba de una emisión verbal, de una emisión verbal acompañada de manipulación de la imagen o de una manipulación de la imagen sin acompañamiento verbal. En el caso de los niños, también analizamos si las intervenciones eran espontáneas o requeridas por el
adulto. Así, el sistema de codificación construido permitió analizar tanto la manipulación que implica la interactividad de la pantalla por parte de niños y adultos como las guías verbales e instrucciones que los adultos brindaban espontáneamente a sus niños en la tarea propuesta. Cada unidad fue codificada según las categorías del sistema construido. Se descartaron del análisis emisiones verbales que no se vinculaban con la tarea, por ejemplo: “Mami ¿me abrís el alfajor?”.

Tabla 5. Sistema de codificación de las interacciones adulto-niño

<table>
<thead>
<tr>
<th>Categorías del adulto</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Mostración</td>
<td></td>
</tr>
<tr>
<td>1.1. Mostración (M): el adulto modela un comportamiento para el niño, le muestra cómo se coloca una pieza, sin verbalizar.</td>
<td></td>
</tr>
<tr>
<td>1.2. Mostración + verbal (M+V): el adulto modela un comportamiento para el niño, le muestra cómo se coloca una pieza y esto está acompañado de una verbalización. Por ejemplo: “Así ponemos la cabecita del perro, ves”, mientras ubica la pieza.</td>
<td></td>
</tr>
<tr>
<td>1.3. Mostración conjunta (MC): el adulto modela un comportamiento para el niño, le muestra cómo se coloca una pieza, tomando la mano del niño y arrastrando conjuntamente la pieza hasta ubicarla. Esta categoría incluye eventos con o sin acompañamiento verbal.</td>
<td></td>
</tr>
</tbody>
</table>
2. **Brindar información**

2.1. **Brindar información (BI):** el adulto presenta información general sobre el dispositivo, la actividad, describe la imagen o refiere a experiencias previas del niño. Esta categoría incluye verbalizaciones que no están acompañadas de manipulación de la imagen. Por ejemplo: “Bueno, acá tenemos un rompecabezas” o “Este perro es como el de la tía”.

2.2. **Brindar información + manipulación de la imagen (BI+M):** el adulto brinda información verbalmente mientras señala o arrastra la imagen.

3. **Guías directas**

3.1. **Guía directa (GD):** el adulto solicita explícitamente al niño que arme el rompecabezas y/o ubique una pieza. Por ejemplo: “Vamos a armar el gato, mirá” o “Ahora tenés que poner la pieza vos”. Esta categoría se utiliza cuando la guía es solo verbal y no está acompañada de manipulación de la imagen.

3.2. **Guía directa + señalamiento (GD+S):** el adulto solicita explícitamente al niño que arme el rompecabezas y ubique una pieza, mientras le señala en la imagen dónde debe ubicarla.

3.3. **Guías directas + arrastre (GD+A):** el adulto solicita explícitamente al niño que arme el rompecabezas y ubique una pieza, mientras la arrastra y ubica cerca del lugar correcto, para que el niño lo haga.

En caso de que el adulto solicite explícitamente al niño que coloque una pieza, diciendo, por ejemplo: “Ahora tenés que poner la pieza vos”, pero arrastra y ubica la pieza él mismo, se considera una mostración + verbal (M+V).

4. **Preguntas**

4.1. **Pregunta (P):** se trata de todo tipo de pregunta vinculada con la tarea. Por ejemplo: “¿Y ahora dónde ponemos la cola?”, ¿Querés hacerlo vos?”. Esta categoría se utiliza cuando la pregunta no está acompañada de manipulación de la imagen.

4.2. **Pregunta + señalamiento (P+S):** el adulto realiza una pregunta mientras le señala al niño dónde debe ubicar la pieza.

4.3. **Pregunta + arrastre (P+A):** el adulto realiza una pregunta mientras arrastra y ubica la pieza cerca del lugar correcto para que el niño lo haga (si la ubica se considera mostración + verbal [M+V]).
5. **Feedback**: refiere a las respuestas del adulto a las intervenciones de los niños.

5.1. *Feedback mostración (FM)*: el adulto responde a su propia solicitud cuando el niño no lo hace o lo hace incorrectamente y ubica la pieza, sin verbalizar.

5.2. *Feedback mostración + verbal (FM+V)*: el adulto responde a su propia solicitud cuando el niño no lo hace, o lo hace incorrectamente, ubicando la pieza y verbalizando, por ejemplo: “¿Dónde van las patitas? Acá van”, mientras ubica la pieza.

5.3. *Feedback mostración conjunta (FMC)*: el adulto responde a su propia solicitud cuando el niño no lo hace, o lo hace incorrectamente, tomando la mano del niño y arrastrando conjuntamente la pieza hasta ubicarla. Esta categoría incluye eventos con o sin acompañamiento verbal.

5.4. *Feedback evaluación positiva (FEP)*: tras una intervención del niño, el adulto felicita, confirma, aprueba o repite indicando su aceptación. Por ejemplo: “Muy bien”, “¡Eso! Ahí, ¡sí!”.

5.5. *Feedback corrección explícita (FCE)*: el adulto corrige evaluando negativamente o reorientando la ejecución del niño de manera explícita. Por ejemplo: “No, eso no va ahí” o “Acércala un poquito más, dale”. Esta categoría se utiliza cuando la emisión es solo verbal y no está acompañada de manipulación de la imagen.

5.6. *Feedback corrección explícita + señalamiento (FCE+S)*: el adulto corrige explícitamente al niño mientras señala en la imagen dónde debe ubicar la pieza.

5.7. *Feedback corrección explícita + arrastre (FCE+A)*: el adulto corrige explícitamente al niño mientras arrastra la pieza y la ubica cerca del lugar correcto para que el niño lo haga (si la ubica se considera *feedback mostración + verbal [FM+V]*).

5.8. *Feedback corrección implícita (FCI)*: el adulto corrige indirectamente al niño, a través de preguntas, pistas o afirmaciones. Por ejemplo: “¿Te parece que va ahí?”. Esta categoría se utiliza cuando la emisión es solo verbal y no está acompañada de manipulación de la imagen.

5.9. *Feedback corrección implícita + señalamiento (FCI+S)*: el adulto corrige implícitamente al niño mientras señala en la imagen dónde debe ubicar la pieza.

5.10. *Feedback corrección implícita + arrastre (FCI+A)*: el adulto corrige implícitamente al niño mientras arrastra la pieza y la ubica cerca del lugar correcto para que el niño lo haga (si la ubica se considera *feedback mostración + verbal [FM+V]*).

Categorías del niño

1. **Emisiones verbales**

1.1. Emisión verbal (EV): incluye todas las verbalizaciones del niño que no están acompañadas de manipulación de la imagen.

1.2. Emisión verbal + señalamiento (EV+S): mientras habla, el niño señala o da *touch* a la imagen.

1.3. Emisión verbal + arrastre (EV+A): mientras habla, el niño arrastra y mueve la pieza (lo puede hacer con un dedo o con la mano entera).

1.4. Emisión verbal + ubicación de la pieza (EV+U): mientras habla, el niño ubica la pieza (lo puede hacer con un dedo o con la mano entera).

1.5. Emisión verbal + *touch* personaje (EV+TP): mientras habla, el niño da *touch* o toca al personaje Nemo para que ubique la pieza.

1.6. Emisión verbal + gesto deslizar (EV+GD): mientras habla, el niño hace el gesto o movimiento de deslizar, sin lograr arrastrar la imagen.
2. Operaciones o conductas no verbales

2.1. Señalamiento (S): señala o da touch a la imagen.
2.2. Arrastre (A): arrastra y mueve la pieza (lo puede hacer con un dedo o con la mano entera).
2.3. Ubicación de la pieza (U): ubica la pieza (lo puede hacer con un dedo o con la mano entera).
2.4. Touch personaje (TP): da touch al personaje Nemo para que ubique la pieza.
2.5. Gesto deslizar (GD): hace el gesto o movimiento de deslizar, sin lograr arrastrar la imagen.
2.6. Otro (O): besa o le pega a la imagen.

Además, cada emisión verbal y operación o conducta no verbal puede ser: espontánea (E), cuando lo hace por iniciativa propia; o requerida (R), cuando lo hace por solicitud del adulto.

Respecto a las categorías de los adultos, puede observarse que aquellas intervenciones acompañadas de señalamientos o arrastres de piezas proporcionan mayor orientación y pistas a sus niños en la tarea. Así, puede establecerse una gradación de las categorías, desde las que implican menor demanda cognitiva al niño hasta las que plantean una mayor exigencia, dada por el nivel de ayuda expresada en la intervención:

- Mostración conjunta (MC);
- Mostración + verbal (M+V);
- Mostración (M);
- Feedback mostración conjunta (FMC);
- Feedback mostración + verbal (FM+V);
- Feedback mostración (FM);
- Brindar información + manipulación (BI+M);
- Brindar información (BI);
- Guía directa + arrastre (GD+A);
- Guía directa + señalamiento (GD+S);
- Guía directa (GD);
- Pregunta + arrastre (P+A);
- Pregunta + señalamiento (P+S);
- Pregunta (P);
- Feedback evaluación positiva (FEP);
- \textit{Feedback} corrección explícita + arrastre (FCE+A);
- \textit{Feedback} corrección explícita + señalamiento (FCE+S);
- \textit{Feedback} corrección explícita (FCE);
- \textit{Feedback} corrección implícita + arrastre (FCI+A);
- \textit{Feedback} corrección implícita + señalamiento (FCI+S);
- \textit{Feedback} corrección implícita (FCI).

En cuanto a las intervenciones de los niños también puede establecerse una gradación de complejidad ascendente, dada por la orientación de sus intervenciones a la ubicación de las piezas del rompecabezas y por tanto a la resolución de la tarea:

- Emisión verbal (EV);
- Touch personaje (TP);
- Emisión verbal + touch personaje (EV+TP);
- Gesto deslizar (GD);
- Emisión verbal + gesto deslizar (EV+GD);
- Señalamiento (S);
- Emisión verbal + señalamiento (EV+S);
- Arrastre (A);
- Emisión verbal + arrastre (EV+A);
- Ubicación de la pieza (U);
- Emisión verbal + ubicación de la pieza (EV+U).

En relación con la confiabilidad del sistema de codificación, una segunda codificadora trabajó en forma independiente sobre una selección al azar de cinco protocolos. Para evaluar la confiabilidad, se calculó el porcentaje de acuerdo entre codificadoras y el coeficiente Kappa de Cohen. El grado de acuerdo intersubjetivo entre codificadoras fue satisfactorio: respecto a las categorías del adulto se obtuvo un acuerdo del 80,48% y
un índice de Kappa de 0,77. En cuanto a las categorías del niño se obtuvo un acuerdo del 86,67% y un índice de Kappa de 0,82, y en relación con las categorías del niño espontáneas o requeridas se obtuvo un acuerdo del 94,20% y un índice de Kappa de 0,87. En los casos de desacuerdo entre codificadoras, las diferencias se dirimieron en una segunda etapa de codificación.

En cuanto al procesamiento cuantitativo de la información, realizamos análisis de frecuencias para indagar la distribución de las categorías de los participantes, y analizamos las respuestas del cuestionario sobre tenencia, hábitos y percepción de uso de tecnologías en los hogares. Posteriormente, el análisis factorial de correspondencias múltiples (Benzécri, 1976; Lebart et al., 1995; Moscoloni, 2005) permitió un abordaje simultáneo del conjunto de variables en estudio, que en este caso fueron los códigos interactivos (del adulto y del niño) y las variables del cuestionario sobre uso de tecnologías, con el fin de analizar la asociación de estas variables entre sí. Por último, y en función de los resultados obtenidos del análisis factorial, realizamos análisis confirmatorios bivariados utilizando la prueba estadística U Mann-Whitney.

Resultados

Categorías del adulto y del niño: se codificó un total de 2817 unidades, correspondientes a las intervenciones de los niños y adultos de las 20 diáadas. Del total de unidades analizadas, 1323 (46,96%) correspondieron a los adultos y 1494 (53,04%), a los niños.

Teniendo en cuenta el total de intervenciones adultas (1323), un 47,30% se trató de emisiones verba-
les acompañadas de manipulación de la imagen. Aquí consideramos cuando el adulto realizaba una muestra, brindaba información, guiaba, preguntaba y respondía al niño y su emisión verbal estaba acompañada de señalamientos y arrastres de las piezas, a través de los cuales brindaba más pistas y orientación en la tarea. Las emisiones verbales que no estuvieron acompañadas de manipulación de la imagen representaron un 51,90%. Aquí, consideramos cuando el adulto brindaba información, guiaba, preguntaba, evaluaba positivamente y respondía al niño, pero no manipulaba la imagen. Las manipulaciones de la imagen que no estuvieron acompañadas de verbalizaciones fueron casi nulas y solo alcanzaron un 0,80%, correspondientes a mostraciones y feedback en que el adulto mostraba sin verbalizar. Así, los adultos hablaron permanentemente a sus niños en la realización de la tarea, y en gran proporción estas verbalizaciones estuvieron acompañadas de manipulaciones de la imagen presentada en la tablet. Respecto a las categorías del adulto, la mayoría fueron feedback (46,40%), es decir, respuestas a las intervenciones de los niños, seguidas de preguntas (27,60%), guías directas (12,90%), brindar información (11,60%) y mostraciones (1,50%). La Tabla 6 muestra la distribución de las frecuencias de las categorías.
Tabla 6. Distribución de las categorías del adulto

<table>
<thead>
<tr>
<th>CATEGORÍAS</th>
<th>f</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>3</td>
<td>0,20</td>
</tr>
<tr>
<td>M+V</td>
<td>10</td>
<td>0,80</td>
</tr>
<tr>
<td>MC</td>
<td>6</td>
<td>0,50</td>
</tr>
<tr>
<td>BI</td>
<td>53</td>
<td>4</td>
</tr>
<tr>
<td>BI+M</td>
<td>100</td>
<td>7,60</td>
</tr>
<tr>
<td>GD</td>
<td>73</td>
<td>5,50</td>
</tr>
<tr>
<td>GD+S</td>
<td>88</td>
<td>6,60</td>
</tr>
<tr>
<td>GD+A</td>
<td>10</td>
<td>0,80</td>
</tr>
<tr>
<td>P</td>
<td>201</td>
<td>15,20</td>
</tr>
<tr>
<td>P+S</td>
<td>153</td>
<td>11,60</td>
</tr>
<tr>
<td>P+A</td>
<td>10</td>
<td>0,80</td>
</tr>
<tr>
<td>FM</td>
<td>8</td>
<td>0,60</td>
</tr>
<tr>
<td>FM+V</td>
<td>49</td>
<td>3,70</td>
</tr>
<tr>
<td>FMC</td>
<td>44</td>
<td>3,30</td>
</tr>
<tr>
<td>FEP</td>
<td>243</td>
<td>18,40</td>
</tr>
<tr>
<td>FCE</td>
<td>85</td>
<td>6,40</td>
</tr>
<tr>
<td>FCE+S</td>
<td>89</td>
<td>6,70</td>
</tr>
<tr>
<td>FCE+A</td>
<td>27</td>
<td>2</td>
</tr>
<tr>
<td>FCI</td>
<td>32</td>
<td>2,40</td>
</tr>
<tr>
<td>FCI+S</td>
<td>35</td>
<td>2,60</td>
</tr>
<tr>
<td>FCI+A</td>
<td>4</td>
<td>0,30</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1323</td>
<td>100</td>
</tr>
</tbody>
</table>

En cuanto a la complejidad de la tarea, dada por la cantidad de piezas y fondo en que podían armarse el rompecabezas, 13 de los 20 adultos seleccionaron que las tres imágenes del rompecabezas se armen con cuatro piezas; un adulto seleccionó que las tres imágenes se armen con seis piezas, y otro que las tres imágenes se armen con nueve piezas. Cinco adultos optaron por una complejidad
ascendente, proponiendo a sus niños que el primer rompecabezas lo armen con cuatro piezas, y el segundo y el tercero con seis o nueve piezas. En cuanto al fondo sobre el que podían armarse los rompecabezas, un solo adulto seleccionó el fondo en blanco, mientras que el resto seleccionó el que permitía observar el contorno de la pieza y el dibujo por encastrar en blanco y negro.

En relación con las categorías de los niños, encontramos que del total (1494) la mayoría fueron intervenciones no verbales (75,80%). Un 13% fueron emisiones verbales acompañadas de manipulación de la imagen y un 11,20% se trató de emisiones verbales en que el niño no manipuló la imagen. Además, del total, un 56,60% fueron requeridas por el adulto y un 43,40% fueron espontáneas. A continuación, la Tabla 7 muestra la distribución de sus categorías.

<table>
<thead>
<tr>
<th>CATEGORÍAS</th>
<th>Espontáneas</th>
<th>Requeridas</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>f</td>
<td>%</td>
<td>f</td>
</tr>
<tr>
<td>EV</td>
<td>110</td>
<td>7,40</td>
<td>57</td>
</tr>
<tr>
<td>EV+S</td>
<td>35</td>
<td>2,30</td>
<td>68</td>
</tr>
<tr>
<td>EV+A</td>
<td>20</td>
<td>1,30</td>
<td>39</td>
</tr>
<tr>
<td>EV+TP</td>
<td>1</td>
<td>0,10</td>
<td>0</td>
</tr>
<tr>
<td>EV+GD</td>
<td>2</td>
<td>0,10</td>
<td>17</td>
</tr>
<tr>
<td>EV+U</td>
<td>2</td>
<td>0,10</td>
<td>12</td>
</tr>
<tr>
<td>S</td>
<td>171</td>
<td>11,40</td>
<td>172</td>
</tr>
<tr>
<td>A</td>
<td>128</td>
<td>8,60</td>
<td>225</td>
</tr>
<tr>
<td>U</td>
<td>55</td>
<td>3,70</td>
<td>97</td>
</tr>
<tr>
<td>TP</td>
<td>19</td>
<td>1,30</td>
<td>9</td>
</tr>
<tr>
<td>GD</td>
<td>101</td>
<td>6,80</td>
<td>145</td>
</tr>
<tr>
<td>O</td>
<td>5</td>
<td>0,30</td>
<td>4</td>
</tr>
<tr>
<td>TOTAL</td>
<td>649</td>
<td>43,40</td>
<td>845</td>
</tr>
</tbody>
</table>

Tabla 7. Distribución de las categorías de los niños
Experiencia previa en el uso de dispositivos tecnológicos: a partir del análisis de los cuestionarios encontramos que respecto a la tenencia de dispositivos tecnológicos en el hogar todos los participantes tenían Smart TV o Led y el 85% (17) tenía notebook, netbook o computadora de escritorio. El 90% (18) contaba con servicio de cable y el 85% (17) tenía servicio de internet. El 55% (11) de los participantes tenía tablet, el 35% (7) tenía MP3, el 15% (3) tenía consola de video juegos (Xbox, PlayStation o Wii), el 5% (1) tenía video juegos portátiles, y ningún participante tenía e-reader.

En relación con el tipo de celular, todos los adultos tenían smartphone y sabían qué son las aplicaciones. Al indagar si habían descargado alguna aplicación de tipo educativa para el niño en el smartphone o en la tablet, el 45% (9) señaló que sí, el 45% (9) señaló que no y el 10% (2) no contestó. Al preguntar qué aplicaciones eran, señalaron que se trataba de aplicaciones para aprender letras, animales, colores, y rompecabezas.

Respecto a los dispositivos tecnológicos a los cuales tenían acceso los niños, todos tenían acceso a la TV; el 65% (13), al smartphone; el 50% (10), a la tablet; el 30% (6), a la computadora y el 10% (2), al MP3. Asimismo, el 55% de los niños tenía su propia TV en su dormitorio, mientras que ninguno tenía acceso a e-readers, consolas de video juegos o juegos portables.

Al indagar qué actividades realizaban los niños en dispositivos móviles, como smartphones o tablets, el 90% refirió que miraba videos, el 45% jugaba y miraba televisión o películas y a un 5% le leían libros.

Al preguntar con qué frecuencia los niños armaban rompecabezas analógicos, el 35% (7) señaló que frecuentemente (al menos una vez a la semana), el 30% (6) que a veces y el 35% (7) que nunca. En cuanto a
la frecuencia con que armaban rompecabezas digitales, el 15% (3) señaló que lo hacían frecuentemente y el 85% (17) que nunca.

Análisis multidimensional de datos: el análisis factorial de correspondencias múltiples permitió analizar las asociaciones entre las variables referidas a tenencia y uso de dispositivos tecnológicos, categorías del adulto y categorías del niño. Este análisis requiere de la diferenciación de dos grupos de variables vinculadas entre sí: el primer grupo, conformado por variables activas que constituyen los ejes factoriales y permiten la comparación de los datos; el segundo grupo, constituido por variables ilustrativas, que posibilitan una mejor comprensión de los ejes factoriales aunque no participan en su constitución (Moscoloni, 2005). Así, del total de variables en estudio seleccionamos como activas las referidas al cuestionario y como ilustrativas las correspondientes a las categorías interactivas del adulto y del niño.

El factor 1 contrapuso dos grupos de categorías. Por un lado, mostró una asociación entre categorías que reflejan un bajo uso de dispositivos tecnológicos (el niño no tiene acceso a la tablet, no juega, no mira TV o películas ni usa aplicaciones en smartphones o tablets, nunca arma rompecabezas digitales, niños y adultos reportan un bajo uso de dispositivos tecnológicos, no tienen tablet y sí tienen computadora, el adulto no descargó aplicaciones educativas para el niño en smartphone o tablet). Este conjunto de categorías se vinculó a determinadas categorías del sistema de codificación. Específicamente al gesto de deslizar, emisión verbal + señalamiento y emisión verbal (sin manipulación de la imagen) por parte del niño, y a categorías del adulto como feedback mostración conjunta, pregunta +
señalamiento, feedback mostración + verbal, guía directa + señalamiento y mostración. Por otro lado, aparecieron asociadas categorías que reflejan un mayor uso de dispositivos tecnológicos (el niño tiene acceso a la tablet, juega, mira televisión, películas y usa aplicaciones en smartphone o tablet, arma rompecabezas digitales frecuentemente, niños y adultos reportan mayor uso de dispositivos tecnológicos, tienen tablet, no tienen computadora, el adulto descargó aplicaciones educativas para el niño en smartphone o tablet). Este conjunto se vinculó a otras categorías del sistema de codificación, específicamente a: emisión verbal + arrastre, emisión verbal + ubicación pieza, arrastre y ubicación pieza, por parte del niño, y a categorías del adulto como mostración + verbal, feedback corrección explícita + arrastre, feedback corrección explícita y guía directa.

El factor 2, por un lado, mostró una asociación entre las siguientes categorías referidas el uso de tecnologías: tienen cable, el niño no mira televisión, películas ni le leen libros en smartphone o tablet, tiene acceso a la computadora y al smartphone, nunca arma rompecabezas tradicionales y mira videos en smartphone o tablet. Este conjunto de categorías apareció asociado a las siguientes categorías del adulto: feedback mostración, muestra conjunta, pregunta + arrastre, feedback mostración conjunta, feedback corrección implícita + arrastre, mostración + verbal, mostración; y a la categoría touch personaje del niño. Por otro lado, se relacionaron las siguientes categorías referidas al uso de tecnologías: no tienen cable, el niño mira televisión o películas y le leen libros en smartphone o tablet, no tiene acceso a la PC ni al smartphone, no mira videos en smartphone o tablet. Este conjunto apareció asociado a las siguientes categorías del niño: gesto de
deslizar, emisión verbal + touch personaje, señalamiento, arrastre, emisión verbal + arrastre, requerida; y a la categoría brindar información por parte del adulto.

En suma, el análisis factorial puso en evidencia un resultado teórico interesante. El factor 1 mostró que las categorías que expresan mayor tenencia y uso de dispositivos tecnológicos se asociaron a categorías del sistema de codificación que implican mayor demanda cognitiva por parte de los adultos a sus niños (por ejemplo, feedback corrección explícita y guía directa) e intervenciones más complejas en la tarea por parte de los niños (por ejemplo, emisión verbal + arrastre, emisión verbal + ubicación pieza). En contrapartida, las categorías que reflejan menor uso de tecnologías se vincularon a categorías del sistema de codificación que implican menor demanda cognitiva por parte de los adultos (por ejemplo, feedback mostración conjunta, guía directa + señalamiento) e intervenciones menos complejas por parte de los niños (por ejemplo, gesto de deslizar y emisión verbal + señalamiento). El factor 2 opuso categorías que reflejan un uso de tecnologías con fines de entretenimiento (por ejemplo, el niño mira videos en smartphone o tablet, no le leen libros en smartphone o tablet) a aquellas que reflejan un uso educativo (el niño no mira videos en smartphone o tablet, sí le leen libros en smartphone o tablet). Así mismo, el primer conjunto de variables se asoció, en su mayoría, a categorías del adulto que implican una baja demanda cognitiva a sus niños (por ejemplo, mostración conjunta) y a la categoría touch personaje por parte del niño, que expresa una intervención de baja complejidad en la tarea, mientras que las categorías que reflejan un uso educativo de tecnologías aparecieron asociadas mayormente a categorías de los niños,
tanto de menor complejidad (emisión verbal + touch personaje, gesto de deslizar) como de mayor complejidad en la tarea (arrastre), y solo a la categoría “brindar información” del adulto.

Análisis confirmatorios: a partir del análisis de los cuestionarios encontramos dos grupos diferenciados de diáadas: aquellas que reportaron un bajo uso de tecnologías, no tenían tablet y los niños no tenían acceso a estas, y aquellas que expresaron un mayor uso de tecnologías, tenían tablet y los niños las utilizaban. Además, pocos niños armaban con frecuencia rompecabezas digitales, y era más común que lo hicieran en formato analógico. Asimismo, el análisis factorial mostró que las categorías que expresan mayor uso de dispositivos tecnológicos por parte de los niños se asociaron a categorías del sistema de codificación que reflejan mayor demanda cognitiva del adulto y complejidad del niño en la tarea, mientras que las categorías que reflejan un menor uso de dispositivos tecnológicos se vincularon a categorías que reflejan menor demanda cognitiva del adulto y complejidad del niño.

Con el propósito de confirmar estas asociaciones, realizamos análisis bivariados a través de los cuales comparamos las frecuencias de las categorías interactivas de los adultos y de los niños en función de las variables más determinantes en el análisis factorial: si el niño tenía acceso a una tablet, armaba rompecabezas digitales, jugaba con smartphones o tablets y reportaba un alto o bajo uso semanal de dispositivos tecnológicos. La Tabla 8 muestra los resultados referidos a las categorías de los adultos.
Tabla 8. Medias y desvíos de las categorías de los adultos en función de la experiencia de los niños con tecnologías

<table>
<thead>
<tr>
<th>Cat.</th>
<th>Acceso a tablet</th>
<th>Arma rompecabezas digitales</th>
<th>Juega en smartphone o tablet</th>
<th>Hábitos de uso</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sí</td>
<td>No</td>
<td>Sí</td>
<td>No</td>
</tr>
<tr>
<td>M</td>
<td>0(0)</td>
<td>0,30 (0,48)</td>
<td>0(0)</td>
<td>0,18 (0,39)</td>
</tr>
<tr>
<td>M+V</td>
<td>0,60 (0,84)</td>
<td>0,40 (0,70)</td>
<td>0,67 (0,58)</td>
<td>0,47 (0,80)</td>
</tr>
<tr>
<td>MC</td>
<td>0,10 (0,32)</td>
<td>0,50 (0,97)</td>
<td>0(0)</td>
<td>0,35 (0,79)</td>
</tr>
<tr>
<td>BI</td>
<td>1,80 (1,87)</td>
<td>3,50 (3,54)</td>
<td>2,33 (3,21)</td>
<td>2,71 (2,93)</td>
</tr>
<tr>
<td>BI+M</td>
<td>3,40 (2,01)</td>
<td>6,60 (5,70)</td>
<td>5,00 (2,00)</td>
<td>5,00 (4,82)</td>
</tr>
<tr>
<td>GD</td>
<td>4,30 (3,27)</td>
<td>3,00 (1,63)</td>
<td>7,00 (5,57)</td>
<td>3,06 (1,30)</td>
</tr>
<tr>
<td>GD+S</td>
<td>2,10 (1,97)</td>
<td>6,70 (5,89)</td>
<td>1,67 (0,58)</td>
<td>4,88 (5,16)</td>
</tr>
<tr>
<td>GD+A</td>
<td>0,30 (0,48)</td>
<td>0,70 (1,06)</td>
<td>0,33 (0,58)</td>
<td>0,53 (0,87)</td>
</tr>
<tr>
<td>P</td>
<td>5,20 (3,97)</td>
<td>14,90 (13,6)</td>
<td>5,33 (5,77)</td>
<td>10,88 (11,56)</td>
</tr>
<tr>
<td>P+S</td>
<td>4,10 (6,84)</td>
<td>11,20 (6,65)</td>
<td>1,00 (1,00)</td>
<td>8,82 (7,55)</td>
</tr>
<tr>
<td>P+A</td>
<td>0,40 (0,70)</td>
<td>0,60 (0,97)</td>
<td>0(0)</td>
<td>0,59 (0,87)</td>
</tr>
<tr>
<td>FM</td>
<td>0,50 (0,71)</td>
<td>0,30 (0,67)</td>
<td>0(0)</td>
<td>0,47 (0,72)</td>
</tr>
<tr>
<td>FM+V</td>
<td>1,60 (1,26)</td>
<td>3,30 (2,00)</td>
<td>1,00 (1,00)</td>
<td>2,71 (1,86)</td>
</tr>
<tr>
<td>FMC</td>
<td>0,90 (1,45)</td>
<td>3,50 (3,74)</td>
<td>0(0)</td>
<td>2,59 (3,18)</td>
</tr>
<tr>
<td>FEP</td>
<td>9,30 (5,42)</td>
<td>15,00 (5,71)</td>
<td>9,33 (7,23)</td>
<td>12,65 (6,06)</td>
</tr>
<tr>
<td>FCE</td>
<td>4,80 (5,90)</td>
<td>3,70 (4,30)</td>
<td>5,00 (3,46)</td>
<td>4,12 (5,36)</td>
</tr>
<tr>
<td>FCE+S</td>
<td>3,20 (3,71)</td>
<td>5,70 (4,37)</td>
<td>0,67 (1,15)</td>
<td>5,12 (4,14)</td>
</tr>
</tbody>
</table>
Como puede observarse, no encontramos diferencias estadísticamente significativas en las categorías mostración (M), mostración + verbal (M+V), brindar información (BI), brindar información + manipulación (BI+M), guía directa (GI), guía directa + arrastre (GI+A), pregunta + arrastre (P+A), feedback mostración (FM), feedback corrección explícita (FCE), feedback corrección explícita + arrastre (FCE+A), feedback corrección implícita (FCI), feedback corrección implícita + señalamiento (FCI+S) y feedback corrección implícita + arrastre (FCI+A). Por tanto, estas intervenciones del adulto no se diferenciaron en función de si los niños tenían acceso a la tablet, armaban rompecabezas digitales, jugaban en smartphone o tablet o tenían un alto o bajo uso de tecnologías.

La categoría mostración conjunta (MC) solo se diferenció en función de si los niños jugaban en smartphone o tablet ($U=31,500; p<.05$). Así, este tipo de intervención del adulto fue más frecuente con aquellos niños que no jugaban en smartphone o tablet. La categoría guía directa + señalamiento (GD+S) se diferenció únicamente en función de los hábitos de uso tecnologías por parte de los niños ($U=24,000; p<.05$), siendo más frecuente con aquellos niños que reportaron un bajo uso de dispositivos tecnológicos.
La categoría pregunta (P) se diferenció en función de si los niños tenían acceso a una tablet ($U=20,500; p<.05$). Los adultos hacían más preguntas a aquellos niños que no tenían acceso a una tablet. Asimismo, la categoría pregunta + señalamiento (P+S) se diferenció en función de si los niños tenían acceso a una tablet ($U=15,500; p<.05$) y armaban rompecabezas digitales ($U=5,000; p<0.5$). Este tipo de intervención también fue más frecuente con aquellos niños que no tenían acceso a una tablet y no armaban rompecabezas digitales.

La categoría feedback mostración + verbal (FM+V) se diferenció en función de si los niños tenían acceso a una tablet ($U=23,000; p<.05$) y de sus hábitos de uso de tecnologías ($U=23,500; p<.05$), siendo más frecuente con aquellos niños que no tenían acceso a una tablet y reportaron un bajo uso de dispositivos tecnológicos. La categoría feedback mostración conjunta (FMC) se diferenció en función de si los niños tenían acceso a una tablet ($U=26,000; p<.05$) y armaban rompecabezas digitales ($U=7,500; p<.05$), siendo más frecuente con aquellos niños que no tenían acceso a una tablet y no armaban rompecabezas digitales. La categoría feedback evaluación positiva (FEP) se diferenció únicamente en función de si los niños tenían acceso a una tablet ($U=20,000; p<.05$). Así, este tipo de intervención por parte de los adultos también fue más frecuente con aquellos niños que no tenían acceso a una tablet. Por último, la categoría feedback corrección explícita + señalamiento (FCE+S) se diferenció en función de si los niños armaban rompecabezas digitales ($U=6,500; p<.05$) y de sus hábitos de uso de tecnologías ($U=20,500; p<.05$), siendo más frecuente con aquellos que no armaban rompecabezas digitales y tenían bajo uso de tecnologías.

En relación con las categorías de los niños, la Tabla 9 muestra los resultados.
Tabla 9. Medias y desvíos de las categorías de los niños en función de su experiencia con tecnologías

<table>
<thead>
<tr>
<th>Cat.</th>
<th>Acceso tablet</th>
<th>Arma rompecabezas digitales</th>
<th>Juega en smartphone/tablet</th>
<th>Hábitos de uso</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sí</td>
<td>No</td>
<td>Sí</td>
<td>No</td>
</tr>
<tr>
<td>EV</td>
<td>4,70 (3,23)</td>
<td>12,20 (10,26)</td>
<td>6,00 (6,00)</td>
<td>8,88 (8,77)</td>
</tr>
<tr>
<td>EV+S</td>
<td>1,70 (1,77)</td>
<td>8,70 (8,99)</td>
<td>1,67 (1,53)</td>
<td>5,82 (7,72)</td>
</tr>
<tr>
<td>EV+A</td>
<td>2,40 (3,81)</td>
<td>3,50 (5,10)</td>
<td>3,33 (4,93)</td>
<td>2,88 (4,48)</td>
</tr>
<tr>
<td>EV+TP</td>
<td>0(0)</td>
<td>0,10 (0,32)</td>
<td>0(0)</td>
<td>0,06 (0,24)</td>
</tr>
<tr>
<td>EV+GD</td>
<td>0,40 (0,67)</td>
<td>1,50 (2,17)</td>
<td>0(0)</td>
<td>1,12 (1,76)</td>
</tr>
<tr>
<td>EV+U</td>
<td>0,60 (1,07)</td>
<td>0,80 (1,62)</td>
<td>0,33 (0,58)</td>
<td>0,76 (1,44)</td>
</tr>
<tr>
<td>S</td>
<td>10,40 (9,17)</td>
<td>25,10 (16,18)</td>
<td>20,67 (8,50)</td>
<td>17,24 (15,84)</td>
</tr>
<tr>
<td>A</td>
<td>17,20 (10,33)</td>
<td>18,40 (11,25)</td>
<td>26,00 (6,56)</td>
<td>16,35 (10,56)</td>
</tr>
<tr>
<td>U</td>
<td>10,70 (8,64)</td>
<td>4,70 (4,03)</td>
<td>20,33 (7,37)</td>
<td>5,47 (4,51)</td>
</tr>
<tr>
<td>TP</td>
<td>1,80 (5,35)</td>
<td>1,10 (1,59)</td>
<td>0(0)</td>
<td>1,71 (4,15)</td>
</tr>
<tr>
<td>GD</td>
<td>3,60 (3,84)</td>
<td>21,20 (13,42)</td>
<td>2,67 (2,52)</td>
<td>14,12 (13,59)</td>
</tr>
<tr>
<td>E</td>
<td>23,90 (20,55)</td>
<td>42,20 (28,78)</td>
<td>45,00 (27,07)</td>
<td>30,94 (26,17)</td>
</tr>
<tr>
<td>R</td>
<td>29,60 (14,47)</td>
<td>56,00 (28,25)</td>
<td>36,00 (12,00)</td>
<td>44,00 (27,81)</td>
</tr>
</tbody>
</table>

Nota: las comparaciones significativas figuran resaltadas en gris.

Como puede observarse, no se encontraron diferencias estadísticamente significativas en las categorías emisión verbal + arrastre (EV+A), emisión verbal + touch personaje (EV+TP), emisión verbal + gesto deslizar (EV+GD),
emisión verbal + ubicación pieza (EV+U), arrastre (A) y touch personaje (TP). Es decir, estas intervenciones de los niños no se diferenciaron en función de si tenían acceso a la tablet, armaban rompecabezas digitales, jugaban en smartphone o tablet o tenían un alto o bajo uso de tecnologías.

Las categorías emisión verbal (EV) y emisión verbal + señalamiento (EV+S) se diferenciaron en función de si tenían acceso a una tablet ($U=23,500; p<.05; U=18,000; p<.05$). Así, estas categorías, que implican que los niños hablaban sin manipular la imagen o bien que hablaban en la tarea y solo señalaban la imagen, fueron más frecuentes en aquellos niños que no tenían acceso a esta herramienta.

La categoría señalamiento (S) se diferenció en función de si los niños tenían acceso a una tablet ($U=19,500; p<.05$) y de sus hábitos de uso de tecnologías ($U=10,500; p<.005$), siendo más frecuente en aquellos niños que no tenían acceso a una tablet y reportaron un bajo uso de tecnologías. La categoría gesto de deslizar (GD) se diferenció en función de si los niños tenían acceso a una tablet ($U=5,000; p<.005$), jugaban en smartphone o tablet ($U=23,000; p<.05$) y de sus hábitos de uso de tecnologías ($U=14,500; p<.05$). Esta categoría también fue más frecuente en aquellos niños que no tenían acceso a una tablet, no jugaban en smartphone o tablet y reportaron un bajo uso de tecnologías.

En cuanto a la categoría ubicación pieza (U), encontramos diferencias estadísticamente significativas en función de si los niños armaban rompecabezas digitales ($U=1,000; p<.05$) y jugaban en smartphone o tablet ($U=22,000; p<.05$). Así, fue más frecuente en aquellos niños que armaban rompecabezas digitales y jugaban en smartphone o tablet.
Las intervenciones espontáneas (E) de los niños se diferenciaron únicamente en función de sus hábitos de uso de tecnologías \((U=18,500; \ p<.05) \), siendo más frecuentes en aquellos niños que reportaron un bajo uso de tecnologías. Por último, las intervenciones requeridas (R) por el adulto se diferenciaron en función de si los niños tenían acceso a una tablet \((U=20,000; \ p<.05) \) y de sus hábitos de uso de tecnologías \((U=19,000; \ p<.05) \), siendo más frecuentes en aquellos niños que no tenían acceso a una tablet y tenían un bajo uso de tecnologías.

Discusión

El presente estudio tuvo por objetivo explorar y analizar la interacción entre adultos y niños con un juego digital e interactivo, que implica la solución de un problema, específicamente el armado de un rompecabezas. Asimismo, indagamos la tenencia y hábitos de uso de dispositivos tecnológicos en los hogares de los participantes y analizamos, desde una perspectiva multidimensional, las variaciones de la interacción niño-adulto según tenencia y hábitos de uso de dispositivos tecnológicos en el hogar. Para ello, realizamos observaciones seminaturalísticas en los hogares de los participantes, les propusimos que armaran tres imágenes de rompecabezas presentadas en una tablet y solicitamos que completaran un cuestionario.

Los resultados en su conjunto mostraron que tanto adultos como niños participaron activamente en la resolución de la tarea propuesta. Un hallazgo interesante fue que, a diferencia de otras investigaciones con niños de edades similares a las estudiadas en esta investigación (Gariboldi y Salsa, 2018; Jauck et al., 2015; Mascareño et al., 2017; Peralta, 1997), los niños intervinieron en mayor proporción que
los adultos, y en gran medida estas intervenciones fueron espontáneas. En su mayoría, se trató de conductas no verbales, específicamente señalamientos, arrastres, gestos de deslizar y ubicaciones de las piezas del rompecabezas.

Los juegos digitales posibilitan, a través de elementos interactivos y multimediales, que la interacción social se vea parcialmente sustituida por la interacción con la pantalla como estrategia para resolver problemas. Sin embargo, en este estudio los niños recurrieron escasamente al recurso de la aplicación (el personaje Nemo) para que ubi-que las piezas del rompecabezas. Por su parte, los adultos no instaron a los niños a que se valgan de este recurso, y en los pocos casos encontrados los niños lo hicieron espontáneamente.

Los adultos hablaron permanentemente a los niños durante la realización de la tarea y casi la mitad de estas verbalizaciones estuvieron acompañadas de señalamien-

tos y arrastres de las piezas, a través de los cuales brinde-ban mayor orientación y pistas en la tarea. La mayoría de sus intervenciones fueron respuestas a las intervenciones de los niños, como evaluaciones positivas y correcciones, lo que denota la gran participación infantil. Además, con frecuencia, los adultos preguntaron, guiaron y brindaron información sobre la tarea, mientras que mostrar al niño cómo ubicar las piezas fue una estrategia poco frecuente.

Estos resultados difieren de los de Peralta (1997), en los que las madres guiaron a sus niños solo verbalmen-te en el armado de un rompecabezas analógico, siendo la palabra con apoyo no verbal muy poco frecuente. Las características distintivas de los resultados aquí encontra-dos podrían relacionarse con la naturaleza y las caracterís-
ticas de la herramienta empleada y además con el hecho de que la mayoría de los niños no tenía experiencia pre-
via en el armado de rompecabezas digitales, por lo que
los adultos probablemente acompañaron en gran medida sus preguntas, guías y respuestas con apoyo no verbal, a fin de brindar mayor orientación. Asimismo, la interactividad de la imagen probablemente generó mayor interés y motivación por parte de los niños, lo que podría explicar su gran participación en la tarea, a pesar de su dificultad (Krcmar y Cingel, 2014).

En cuanto a la tenencia de dispositivos, encontramos una fuerte presencia de tecnologías en los hogares. Sin embargo, en relación con los hábitos de uso, encontramos dos grupos diferenciados de diáadas. Por un lado, aquellas que reportaron un bajo uso de tecnologías y que los niños no tenían acceso a una tablet en el contexto de sus hogares. Por otro, aquellas que expresaron un mayor uso de tecnologías y que los niños frecuentemente utilizaban tablets.

Otro hallazgo interesante fue que diversas categorías del sistema de codificación construido se diferenciaron en función de la experiencia previa de los niños con tecnologías. A partir del análisis factorial y de análisis confirmatorios, encontramos que con aquellos niños que tenían menor experiencia, las intervenciones adultas en general implicaban una baja demanda cognitiva, como mostraciones, guías acompañadas de señalamientos, preguntas y evaluaciones positivas. En estos niños fueron más frecuentes intervenciones, espontáneas y requeridas, de baja complejidad como gestos de deslizar, señalamientos de las piezas y verbalizaciones sin manipulación. La presentación de una actividad en una tablet constituía una novedad para ellos que generaba gran interés, lo que podría explicar tanto la espontaneidad de sus intervenciones como los requerimientos adultos para que intervengan. Respecto a los niños que reportaron mayor uso de tecnologías, no encontramos variaciones significativas en las intervenciones de los adultos, y los niños ubicaron las piezas del rompecabezas con mayor frecuencia.
De manera análoga a lo que ocurre en otros contextos y tareas (Gariboldi y Salsa, 2018; Jauck et al., 2015; Peralta, 1995; 1997), las estrategias adultas se ajustaron al nivel de competencia que percibían de los niños (Wertsch, 1988; Wood et al., 1976); en este caso, en función de su experiencia previa con la herramienta empleada. Así, con aquellos niños que reportaron un bajo uso de tecnologías fueron más frecuentes intervenciones menos exigentes y más directivas, mientras que con aquellos niños con mayor experiencia fueron de baja y de alta demanda cognitiva.

En suma, el presente estudio se destaca por abordar un tema escasamente investigado, como las características que adopta la interacción entre adultos y niños cuando un juego que implica la solución de un problema es presentado en una imagen digital e interactiva, en el contexto de sus hogares. Estos resultados, en relación con estudios sobre interacción materno-infantil en el armado de rompecabezas analógicos (Peralta, 1997) y con investigaciones sobre situaciones de lectura mediada por dispositivos tecnológicos (Krcmar y Cingel, 2014; Parish-Morris et al., 2013), sugieren que el soporte que media la actividad modifica la estructura de la interacción y que a su vez esto está ligado a la experiencia previa de los niños con tecnologías.
Tecnologías en los hogares

Presentación

Desde su aparición, el uso de dispositivos tecnológicos en la infancia generó interrogantes y controversias entre padres, madres, docentes e investigadores. Actualmente, la confianza en la potencialidad educativa de estas herramientas coexiste con cierto temor sobre su impacto negativo en etapas iniciales del desarrollo.

Diversos estudios encontraron que el uso excesivo de dispositivos tecnológicos a edades tempranas se asocia a mayores riesgos de sobrepeso y obesidad (Cox et al., 2012; Wen et al., 2014) y a menos horas de sueño por noche (Cespedes et al., 2014). Otras investigaciones encontraron que ver televisión en exceso podría asociarse a dificultades socioemocionales y del desarrollo del lenguaje, probablemente debido a que el uso excesivo de pantallas disminuye o sustituye el tiempo de interacción social con pares y adultos (Madigan et al., 2019; Schmidt et al., 2008; Tomopoulos et al., 2010; Zimmerman et al., 2007).

En este marco, la Academia Americana de Pediatría (AAP) ha publicado una serie de recomendaciones destinadas a pediatras, padres y madres sobre el correcto uso de estos dispositivos a edades tempranas (AAP, 1999; 2011; 2013; 2016). Clásicamente se ha sugerido evitar el uso de pantallas en niños menores de un año y medio y limitar el tiempo a no más de una hora diaria en niños de entre 2 y 5
años. En estas recomendaciones se ha destacado la importancia de construir espacios y momentos libres de pantallas, y que su empleo no desplace ni sustituya el ejercicio físico, las horas de sueño, el juego y la interacción social. Asimismo, se ha enfatizado que los niños utilicen estos dispositivos con acompañamiento y supervisión de un adulto que mediante el diálogo e interacción ayude a comprender y relacionar lo que observan con el mundo que los rodea. También se destaca la importancia de evitar contenido violento, programas acelerados y aplicaciones con elementos distractores que los pequeños no comprenden, optando por contenido adecuado a su edad y de tipo educativo.

En esta misma línea, la Organización Mundial de la Salud (OMS), en el marco de una serie de lineamientos sobre la actividad física, el comportamiento sedentario y el sueño en niños menores de 5 años, enfatizó la importancia de limitar el uso de pantallas en esta franja etaria (OMS, 2019). Considerando que la primera infancia es una etapa caracterizada por un rápido desarrollo físico y cognitivo, en que se conforman hábitos tanto en el niño como en las dinámicas familiares, la OMS recomienda sustituir el tiempo que el niño permanece sedentario y en soledad frente a una pantalla por actividad física, situaciones de juego y lectura con un adulto, preservando las horas de sueño necesarias para su edad.

En el contexto local, la Subcomisión de Tecnologías de la Información y Comunicación de la Sociedad Argentina de Pediatría (SAP) también sugiere limitar el uso de pantallas en niños pequeños (Melamud y Waisman, 2019; SAP, 2017). En consonancia con las recomendaciones internacionales, desaconseja su uso antes del año y medio de vida, sugiere limitar el tiempo de uso a no más de una hora por día en menores de 5 años y destaca la importancia de la supervisión de un adulto para evitar la exposición a
contenidos inapropiados para la edad o en horarios que afecten el sueño o la interacción social del niño con miembros de su familia.

Cabe aclarar que estas sugerencias referidas al uso recreativo de tecnologías experimentaron ciertas modificaciones a raíz de la pandemia por COVID-19. El aislamiento social, preventivo y obligatorio condujo a que los dispositivos tecnológicos fueran el medio privilegiado para sostener actividades sociales y educativas, lo que aumentó las horas de pantalla, por lo que en tiempos de pandemia se enfatiza la necesidad de supervisar la calidad del contenido y el contexto en que los niños emplean estas herramientas, y no solo el tiempo de uso (SAP, 2020).

A pesar de las clásicas recomendaciones, en los últimos años numerosas investigaciones documentaron la presencia de dispositivos tecnológicos en los hogares y el uso cada vez mayor por parte de niños pequeños. En este sentido, organizaciones como Common Sense Media, de Estados Unidos, promueven el uso seguro de dispositivos tecnológicos y de contenido digital en niños y adolescentes. Entre otras actividades, evalúa y califica contenidos digitales, elabora recomendaciones y realiza capacitaciones dirigidas a familias y educadores. Esta organización, junto a otras organizaciones filantrópicas –como la Fundación Kaiser Family– realizaron numerosos estudios para indagar la tenencia y hábitos de uso de tecnologías en hogares estadounidenses (Holloway et al., 2013; Kabali et al., 2015; Lauricella et al., 2015; Rideout et al., 2003; Rideout, 2011; 2014; 2017; Vandewater et al., 2007). Estos estudios reportaron que en casi todos los hogares hay al menos un televisor, que la mayoría de los adultos tiene smartphone y tablet y que los niños interactúan con estos dispositivos desde su primer año de vida.
Por ejemplo, Kabali et al. (2015) encontraron que la mayoría de los niños miraba televisión diariamente independientemente de su edad y que casi la mitad de los niños de un año usaba dispositivos móviles todos los días para jugar, mirar videos o usar aplicaciones. El uso de dispositivos móviles aumentaba significativamente con la edad y hacia los 2 años la mayoría de los niños utilizaba estos dispositivos todos los días. Además, hacia los 4 años la mayoría tenía su propia tablet y la mitad, su propia televisión. En cuanto a los hábitos de los adultos, la mayoría dejaba que los niños jugaran con dispositivos móviles y se los daban cuando tenían que realizar alguna actividad. Lauricella et al. (2015) encontraron que un mayor tiempo de uso de tecnologías por parte de padres y madres, y una percepción positiva sobre su utilización, se asociaba a un mayor uso por parte de sus hijos.

Estos resultados están en línea con los de estudios realizados en países europeos como España (Tena et al., 2019), Portugal (Brito, 2018), Francia (Cristia y Seidl, 2015), Holanda (Nikken y Schols, 2015) e Irlanda (Ahearne et al., 2015), que reportaron una tendencia creciente en el acceso y uso de dispositivos tecnológicos por parte de niños pequeños.

En Latinoamérica, si bien se cuenta con menor evidencia empírica a edades tempranas, algunos estudios también advierten y reflexionan sobre la fuerte presencia de estos dispositivos, como en el caso de Chile (Berríos et al., 2015), Ecuador (Álvarez-Cadena et al., 2020) y Colombia (Aristizábal-García, 2020).

Frente a la gran cantidad de investigaciones realizadas a nivel internacional, en la Argentina son escasos los antecedentes sobre el tema (Pedrouzo et al., 2020; Waisman et al., 2018). Por ejemplo, Waisman et al. (2018) reportaron
el uso de pantallas en niños de entre 6 meses y 5 años en Río Cuarto (Córdoba). Encontraron que de manera similar a lo que sucede en otros países, los niños están expuestos a las pantallas desde muy temprano en sus vidas. Casi todos los hogares tenían televisión, una gran proporción computadora y la mayoría de los padres y madres tenían smartphone. La gran mayoría de los niños miraba televisión diariamente o varias veces a la semana, y más de la mitad utilizaba pantallas móviles con mucha frecuencia, aunque antes de los 2 años interactuaban en menor medida con pantallas táctiles.

En este marco, en el equipo de investigación adaptamos un cuestionario que indaga la tenencia, hábitos y percepción de uso de tecnologías en los hogares. En función de pruebas piloto y resultados preliminares (Raynaudo et al., 2017; Sartori et al., 2017), y dada la escasez de antecedentes en el contexto local, el estudio 5 presenta la investigación realizada en el marco de este trabajo.

Estudio 5

Tenencia, hábitos y percepción de uso de dispositivos tecnológicos en los hogares

El objetivo de este estudio fue indagar la tenencia, hábitos y percepciones de uso de dispositivos tecnológicos en padres, madres o adultos responsables de niños de hasta 8 años.

Método

Participantes: participaron 400 madres, padres y adultos responsables de niños de hasta 8 años.
Materiales: cuestionario denominado “Tecnologías en los hogares y su uso por parte de niños (0-8 años) en Argentina” (Sartori et al., 2017). Este consiste en una traducción y adaptación del cuestionario utilizado por A Common Sense Media (Rideout, 2013). La adaptación implicó que algunas preguntas fueran eliminadas, otras fueran agregadas y otras, modificadas. El cuestionario consta en su mayoría de preguntas cerradas de elección múltiple y de escala Likert, y también de algunas preguntas abiertas. El instrumento está compuesto por 33 ítems distribuidos en cuatro apartados que indagan:

1. Datos demográficos: quién contesta, edad y nivel de estudio alcanzado, ocupación, ciudad y provincia en que vive, género del niño y con quién vive.
2. Tenencia de dispositivos tecnológicos en el hogar: qué dispositivos tienen, a cuáles tiene acceso el niño, qué tipo de celular tiene el adulto, si conoce qué son las aplicaciones, cuántas descargó en su smartphone o tablet, cuántas fueron descargadas para el niño y si alguna es educativa.
3. Hábitos de uso por parte de adultos y niños: actividades que el niño realiza en smartphone o tablet y frecuencia semanal con que niños y adultos realizan determinadas actividades que implican el uso de tecnologías.
4. Percepción de los adultos sobre el uso de dispositivos tecnológicos en la infancia: se presentan frases controversiales y los adultos deben indicar su grado de acuerdo entre cinco opciones de respuesta: completamente de acuerdo, de acuerdo, ni en acuerdo ni en desacuerdo, no acuerdo y completamente en desacuerdo.
Procedimiento: distribuimos una versión impresa del cuestionario en diversas instituciones educativas ubicadas en las localidades de Empalme, Villa Constitución, Villa Constitución y Rosario (Santa Fe, Argentina). El cuestionario también se distribuyó virtualmente mediante un formulario de Google, con la finalidad de ampliar la muestra y acceder a otras provincias del país.

Resultados

Características de los participantes: el cuestionario fue contestado por mamás (83,60%), papás (13,80%) abuelos y tíos (2,60%). En cuanto a su edad, tenían entre 18 y 63 años, la mayoría de los cuales tenía entre 25 y 35 años (49,60%). Respecto a la educación formal, el 60,80% tenía estudios terciarios o universitarios; el 36% tenía estudios secundarios y el 3,20%, estudios primarios. En cuanto a su ocupación, el 82,75% trabajaba en sus profesiones u oficios, el 15,25% trabajaba exclusivamente en las tareas del hogar y cuidado de los niños y el 2% no contestó.

La mayoría de las personas que respondieron eran de la provincia de Santa Fe (73,50%). También se obtuvieron datos de Buenos Aires (11%), Entre Ríos (8,80%) y Córdoba (3%). El 3,70% restante era de las provincias de Neuquén, Río Negro, Chubut, San Luis, La Rioja, Santiago del Estero, Tucumán, Salta y Jujuy.

En cuanto a los niños por quienes se respondió el cuestionario, el 50,80% eran niños y el 49,20%, niñas. Respecto a su edad, el 38,60% tenía hasta 3 años, el 44,90% entre 4 y 5 años y el 16,50% entre 6 y 8 años. Con relación a con quién vivían, el 41,80% vivía con la mamá y el papá; el 41%, con la mamá, el papá y los hermanos; el 5,50% vivía solo con la mamá; el 3%, con la mamá y los hermanos; el 3,30%, con la mamá y su fami-
lia extendida (abuelos, tíos); el 2,80%, con la mamá, el papá y la familia extendida; el 0,80%, con la mamá y la pareja de su mamá; el 0,80%, con la mamá, la pareja de la mamá y los hijos de la pareja; el 0,50% vivía con el papá; y el 0,50% no contestó.

Tenencia y hábitos de uso de dispositivos tecnológicos en el hogar: en cuanto a la presencia de dispositivos en el hogar, el 85,80% tenía Smart TV o Led y el 83,50% notebook, netbook o computadora de escritorio. Asimismo, el 85,30% tenía servicio de internet y el 84,50% contaba con servicio de cable. El 68,30% tenía televisor de tubo; el 60,30%, tablet; el 55,80%, DVD; el 30,30%, MP3; el 28% tenía consola de video juegos (Xbox, PlayStation o Wii); el 9,50% tenía grabador digital de video; el 6%, videojuegos portátiles y el 4,80%, e-reader. Además, el 48,50% de los niños tenía su propia TV en su habitación.

En cuanto al tipo de celular, el 96,30% de los adultos tenía un smartphone; el 3,20%, un celular clásico (solo para llamadas y mensajes) y el 0,50% no tenía celular. La mayoría (86,70%) sabía qué son las aplicaciones, el 11,50% indicó no estar seguro y un 1,80% refirió no saber en qué consisten. Al indagar cuántas aplicaciones habían descargado en su smartphone, la mayoría (69,30%) refirió que descargó entre una y nueve, un 11,30% indicó que ninguna, un 11,10% indicó que entre 10 y 19, un 5,40% indicó que más de 20 y el 2,90% no sabía o no contestó. Al consultarles cuántas aplicaciones habían descargado en su tablet (en caso de tener), el 38,30% había descargado entre una y nueve, el 38,30% no había descargado aplicaciones, el 14,10% entre 10 y 19, el 4,20% más de 20 y el 5,10% no sabía o no contestó. Al preguntarles si alguna de estas aplicaciones era de tipo educativa para el niño, el 39,80% respondió que sí, el 37% que no y un 23,30% no contestó. Al indagar cuáles eran, las respuestas más frecuentes refirieron a que
se trataba de aplicaciones para aprender letras, números y colores, así como rompecabezas y juegos de memoria.

En relación con los dispositivos tecnológicos a los cuales tenían acceso los niños, el 88,20% tenía acceso a la TV (común, Led o Smart TV), el 58,80% al smartphone, el 51,60% a la tablet, el 41,60% a la computadora, el 13,60% a consola de video juegos (Xbox, Playstation, Wii), el 4,80% al MP3, el 2,80% a videojuegos portables y el 1,50% al e-reader. La Tabla 10 muestra la distribución de estas frecuencias en función de las edades de los niños. Para ello, consideramos los cuatro dispositivos a los que más acceso tenían: TV, smartphone, tablet y computadora.

<table>
<thead>
<tr>
<th>Dispositivos</th>
<th>Edad del niño</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hasta 3 años</td>
<td>De 4 a 5 años</td>
</tr>
<tr>
<td>TV</td>
<td>33,50%</td>
<td>39,80%</td>
</tr>
<tr>
<td>Smartphone</td>
<td>22,20%</td>
<td>27,80%</td>
</tr>
<tr>
<td>Tablet</td>
<td>15,40%</td>
<td>25,60%</td>
</tr>
<tr>
<td>Computadora</td>
<td>11,60%</td>
<td>20,70%</td>
</tr>
</tbody>
</table>

Al indagar qué actividades realizaban los niños en dispositivos móviles, como smartphone o tablet, el 87,20% refirió que miraban videos, el 61,60% jugaba, el 33,50% miraba televisión, el 19,70% usaba aplicaciones, el 8,30% leía o le leían libros y el 4,60% no interactuaba con estos dispositivos. La Tabla 11 muestra la distribución de estas frecuencias en función de las edades de los niños.
<table>
<thead>
<tr>
<th>Actividades con dispositivos móviles</th>
<th>Edad del niño</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hasta 3 años</td>
<td>De 4 a 5 años</td>
</tr>
<tr>
<td>Mirar videos</td>
<td>34,20%</td>
<td>39,20%</td>
</tr>
<tr>
<td>Jugar</td>
<td>15,30%</td>
<td>33,20%</td>
</tr>
<tr>
<td>Mirar TV</td>
<td>11,60%</td>
<td>15,60%</td>
</tr>
<tr>
<td>Usar apps</td>
<td>6,80%</td>
<td>8,60%</td>
</tr>
<tr>
<td>Leer o que le lean</td>
<td>2,30%</td>
<td>3,50%</td>
</tr>
<tr>
<td>Ninguna</td>
<td>2,80%</td>
<td>1%</td>
</tr>
</tbody>
</table>

En relación con los hábitos semanales de los niños, el Gráfico 5 muestra la frecuencia con que: 1) miraban TV; 2) jugaban con juegos educativos en smartphone o tablet (por ejemplo rompecabezas o juegos de memoria); 3) utilizaban aplicaciones solo para divertirse en smartphone o tablet; 4) utilizaban aplicaciones creativas (por ejemplo para dibujar, componer música y crear videos) en smartphone o tablet; 5) miraban videos o TV en smartphone o tablet; 6) los adultos les leían por medio de una tablet u otro dispositivo; 7) los adultos les leían en soporte papel.
Gráfico 5. Hábitos semanales de los niños

En cuanto a los hábitos de los adultos, indagamos la frecuencia semanal con que realizaban determinadas actividades que implicaban darles dispositivos tecnológicos a los niños. El Gráfico 6 muestra la frecuencia con que: 1) daban al niño su smartphone u otro dispositivo como forma de entretenimiento cuando estaban fuera del hogar y estaban ocupados; 2) daban al niño algún dispositivo como forma de entretenimiento cuando realizaban alguna tarea dentro del hogar; 3) miraban el celular u otro dispositivo mientras jugaban con el niño; 4) miraban junto al niño programas de TV para adultos.
En lo referido a los hábitos en los hogares, el Gráfico 7 muestra la frecuencia con que: 1) la TV estaba prendida, incluso cuando nadie la miraba; 2) el niño utilizaba más de un dispositivo a la vez.
Percepción adulta sobre el uso de tecnologías en la infancia: se presentaron frases controversiales sobre la utilización de dispositivos tecnológicos en la infancia y los adultos debían indicar su grado de acuerdo, seleccionando entre cinco opciones de respuesta. El Gráfico 8 muestra las percepciones de los adultos ante las afirmaciones: 1) “el uso de tecnología es imprescindible para el desarrollo intelectual y escolar de los niños”; 2) “la tecnología afecta el tiempo que pasamos en familia”; 3) “los niños no tendrían que utilizar dispositivos tecnológicos”; 4) “los niños tendrían que jugar con materiales concretos y no con dispositivos tecnológicos”; 5) “el uso de tecnología provoca dificultades o daños psíquicos, emocionales e intelectuales”; 6) “los niños de hoy en día saben utilizar las tecnologías intuitivamente mejor que los adultos”; 7) “las tecnologías sirven únicamente para entretener al niño y no tienen potencial educativo.”
Gráfico 8. Percepción adulta sobre el uso de dispositivos tecnológicos en la infancia

Análisis multidimensional de datos

El análisis multidimensional de datos, a través de las técnicas de análisis factorial y de clasificación, permitió considerar simultáneamente todas las variables en estudio y construir perfiles o grupos de participantes con características similares, en función de sus hábitos y percepción sobre el uso de tecnologías. Para este análisis, se excluyeron aquellos cuestionarios que tenían cinco o más preguntas sin responder. Así, trabajamos con una muestra constituida por 375 casos.

Del total de variables en estudio seleccionamos como variables activas la edad del niño y aquellas relativas a la tenencia, hábitos y percepción de los adultos sobre el uso de tecnologías. Las variables ilustrativas fueron la edad del adulto y el género del niño.

El análisis factorial permitió observar la asociación de las variables y categorías. En el factor 1, se proyectaron variables relativas al acceso y frecuencia de uso de...
tecnologías por parte de los niños. Se observó una clara oposición entre variables y categorías. Por un lado, aparecieron vinculadas aquellas que refieren al acceso y uso elevado y/o diario (por ejemplo: el niño tiene acceso a la tablet, usa aplicaciones, mira videos, tiene su propia TV en su habitación, etc.), y, por otro lado, aquellas que indican que los niños no utilizan tecnologías (por ejemplo: el niño no tiene acceso a dispositivos, no mira TV, no usa aplicaciones). En el factor 2, se proyectaron variables referidas a la percepción de los adultos sobre el uso de tecnologías y variables referidas a la frecuencia de uso por parte de los niños. Por un lado, aparecieron vinculadas categorías que expresan una percepción negativa (por ejemplo: “estoy completamente de acuerdo en que los dispositivos tecnológicos generan en los niños aislamiento y dificultades en la socialización” y en que “el uso de tecnología provoca dificultades o daños psíquicos, emocionales e intelectuales”) y un uso diario de tecnologías (por ejemplo: el niño a diario mira videos en dispositivos móviles y usa aplicaciones para divertirse), y por otro lado aparecieron vinculadas categorías que no expresan acuerdo ni desacuerdo sobre el uso de tecnologías (por ejemplo: “ni acuerdo ni desacuerdo con que el uso de tecnología provoca dificultades o daños psíquicos, emocionales e intelectuales”) y expresan una menor frecuencia de uso (por ejemplo: el niño mira TV hasta tres o cuatro veces a la semana).

De manera complementaria al análisis factorial, la técnica de clasificación condujo a la conformación tres grupos de participantes.

Grupo 1. Aceptación y uso bajo

Conformado por 151 casos, constituye el 40,27% de la muestra. Este grupo se asoció a un nivel educativo universitario de los padres y a la edad de niños, en su mayoría,
de hasta 3 años. Según informaron sus padres, se trata de niños que no tenían acceso a tablets, smartphones ni computadoras. Por tanto, no utilizaban aplicaciones, softwares ni sitios virtuales. En cuanto a la tenencia de dispositivos en el hogar, se trata de familias que en su mayoría no tenían tablet, DVD ni consola de videojuegos.

Los adultos en general tenían una percepción negativa sobre el uso de tecnologías. Si bien no expresaron acuerdo ni desacuerdo respecto de las frases “el uso de tecnología provoca dificultades o daños psíquicos, emocionales e intelectuales” y “jugar con tecnologías también es jugar, solo es una nueva forma de hacerlo”, estuvieron completamente de acuerdo con que “los niños tendrían que jugar con materiales concretos y no con dispositivos tecnológicos”. Acordaron con que “los niños no tendrían que utilizar dispositivos tecnológicos”. Asimismo, no acordaron con que “el uso de tecnología es imprescindible para el desarrollo intelectual y escolar de los niños”.

Grupo 2. Aceptación y uso moderado

Conformado por 152 casos, constituye el 40,53% de la muestra. Este grupo no se asoció a un nivel educativo en particular de los adultos y los niños en su mayoría tenían entre 4 y 5 años de edad.

Se trata de niños que tenían acceso a dispositivos móviles, como tablets y smartphones. Utilizaban aplicaciones, software y sitios virtuales, con fines de entretenimiento y educativos hasta cuatro días a la semana. Además, jugaban habitualmente con juguetes interactivos (muñecos que hablan, peluches con luces y sonido), tenían acceso a la televisión, a consola de video juegos y a la computadora.

En cuanto a la tenencia de dispositivos tecnológicos, se trataba de familias que en su gran mayoría tenían Smart
TV y cable y los niños tenían televisión en su habitación. Respecto a sus hábitos, los padres informaron que entre uno y dos días a la semana les daban auriculares a los niños para que miraran videos cuando realizaban actividades que requirieran silencio. Ademáes, entre cinco y seis días a la semana les daban dispositivos tecnológicos cuando tenían que hacer actividades en el hogar. También informaron que les leían libros tanto en formato papel como electrónico hasta tres o cuatro días a la semana.

Grupo 3. Aceptación y uso alto

Conformado por 72 casos, constituye el 19,20% de la muestra. Este grupo se asoció a un nivel educativo secundario de los adultos responsables, y no se asoció a franja etaria alguna de los niños.

Se trata de niños que utilizaban dispositivos tecnológicos, interactuaban con smartphones y tablets y miraban televisión todos los días, sea como forma de entretenimiento o con fines de aprendizaje. En cuanto a la tenencia de dispositivos tecnológicos en el hogar, se trata de familias que tenían tablet y consola de videojuegos y los niños contaban con televisión en su habitación. Respecto a sus hábitos, los adultos señalaron que todos los días leían libros a sus niños en dispositivos tecnológicos. Además, diariamente miraban su smartphone mientras jugaban con sus niños y les daban este u otro dispositivo cuando tenían que realizar alguna actividad fuera o dentro de su hogar. Asimismo, señalaron que en su hogar siempre estaba la televisión prendida, incluso cuando nadie la mira, y por tanto los niños siempre utilizaban más de una tecnología a la vez.

Se trata de adultos que expresaron una percepción positiva sobre el uso de tecnologías. Estuvieron completamente de acuerdo con las frases “los niños de hoy en día saben utilizar las tecnologías intuitivamente mejor que los
adultos” y “jugar con tecnologías también es jugar, solo es una nueva forma de hacerlo”. Acordaron con que “el uso de tecnología es imprescindible para el desarrollo intelectual y escolar de los niños”. Además expresaron desacuerdo con que “la tecnología nos hace pasar menos tiempo en familia” y estuvieron completamente en desacuerdo con las siguientes frases: “el uso de tecnología provoca dificultades o daños psíquicos, emocionales e intelectuales”, “los niños tendrían que jugar con materiales concretos y no con dispositivos tecnológicos”, “los niños no tendrían que utilizar dispositivos tecnológicos”, “los dispositivos tecnológicos generan en los niños aislamiento y dificultades en la socialización” y “comprender algunos aspectos de las tecnologías es una tarea dificultosa para los niños”.

Discusión

Este estudio tuvo por objetivo indagar la tenencia, hábitos y percepciones de uso de dispositivos tecnológicos en padres, madres o adultos responsables de niños de hasta 8 años. Para ello, adaptamos un cuestionario implementado en Estados Unidos (Rideout, 2013), que denominamos “Tecnologías en los hogares y su uso por parte de niños (0-8 años) en Argentina” (Sartori et al., 2017).

El cuestionario fue respondido mayormente por mamás y en menor medida por papás, abuelos y tíos. Si bien contamos con información de diversas provincias, la mayoría de los participantes vivía en el centro del país.

Los dispositivos tecnológicos más presentes en los hogares fueron la TV, la computadora y la *tablet*. Además, la gran mayoría de los adultos tenía *smartphone* y utilizaba frecuentemente diversas aplicaciones. Al igual que en otras investigaciones (Lauricella et al., 2015; Waisman
et al., 2018), los cuatro dispositivos a los que más tenían acceso los niños eran la TV, el smartphone, la tablet y la computadora. Además, casi la mitad de los niños tenía su propia TV en su habitación.

Un resultado interesante fue que, considerando los niños que tenían acceso a estos dispositivos, la mayoría tenía entre 4 y 5 años, mientras que los de entre 6 y 8 años eran los que menos los utilizaban. Estos resultados entran en tensión con el estudio de Kabali et al. (2015) y con la idea comúnmente aceptada de que el uso de dispositivos aumenta con la edad, y podría vincularse tanto a la percepción de los adultos sobre el uso de tecnologías como a la edad y nivel educativo del niño. Los más pequeños, de hasta 3 años, utilizan en menor medida estos dispositivos probablemente debido a que los adultos advierten el riesgo que su uso implica en etapas iniciales del desarrollo; mientras que entre los 4 y los 5 años se incorporarían como herramientas de juego o entretenimiento, y entre los 6 y los 8 años su uso disminuye nuevamente por el inicio de la escolaridad primaria.

En relación con los hábitos de los niños, encontramos que la gran mayoría miraba televisión todos los días o varias veces a la semana. Además, utilizaban dispositivos móviles para mirar videos o TV y jugar, y en menor medida para usar aplicaciones y que les lean libros, siendo más frecuente la lectura en formato papel. Asimismo, la mayoría de los adultos daba algún dispositivo al niño, dentro o fuera de su hogar, como forma de entretenimiento al menos una o dos veces por semana. Por tanto, el uso de estos dispositivos fue mayormente con fines lúdicos o de entretenimiento y no educativos.

Estos resultados muestran una tendencia similar a los reportados en Estados Unidos (Lauricella et al., 2015; Rideout, 2017), Europa (Ahearne et al., 2015; Cristia y Seidl,
2015; Nikken y Schols, 2015; Tena et al., 2019), Latinoamérica (Álvarez-Cadena et al., 2020; Aristizábal-García, 2020; Barrios et al., 2015) y la Argentina (Pedrouzo et al., 2020; Waisman et al., 2018). Sin embargo, en el presente estudio la presencia y uso de estas herramientas se encontró en menor proporción que en las investigaciones mencionadas.

En cuanto a la percepción de los adultos, si bien la mayoría advirtió que el uso de tecnologías afecta el tiempo compartido en familia y que los niños deberían jugar más con materiales concretos, en términos generales expresaron una percepción positiva sobre su implementación. En su mayoría, no acordaron con que los niños no deberían utilizar estas herramientas, y reconocieron su potencial educativo. La gran mayoría señaló que los niños saben utilizar las tecnologías intuitivamente mejor que los adultos. Esta creencia radica en que la interfaz de los dispositivos tecnológicos es muy intuitiva y fácil de manipular, lo que conduce a la idea de que los niños comprenden fácilmente las imágenes proyectadas, y podría explicar el hecho de que los niños utilicen estos dispositivos generalmente solos, sin la guía o ayuda adulta (Sheehan y Uttal, 2016; Strouse et al., 2013; Troseth et al., 2016).

Otro resultado interesante fue el evidenciado por el análisis factorial. Por un lado, encontramos asociadas variables y categorías que expresan un uso diario de tecnologías, las cuales se opusieron a aquellas que señalan que los niños no utilizan estas herramientas. Por otro lado, encontramos vinculadas variables y categorías que expresan una percepción negativa y un uso diario de tecnologías, las cuales se opusieron a aquellas que no expresan acuerdo ni desacuerdo sobre el uso de tecnologías y reflejan una menor frecuencia de uso. Estos resultados advertirían que una posición crítica frente a las tecnologías no
necesariamente se vincula a un menor uso por parte de los niños, pudiendo incluso asociarse a un uso cotidiano.

A partir del análisis multidimensional de datos, encontramos tres perfiles de participantes, claramente diferenciados, en función de sus hábitos y percepción de uso de tecnologías. Uno de los grupos se caracterizó por un bajo uso de tecnologías y se trató de adultos que expresaron una percepción negativa sobre la implementación de estas herramientas a edades tempranas. Este grupo apareció asociado a niños que en su mayoría tenían hasta 3 años de edad y a adultos con estudios universitarios. Estos resultados confirman los análisis descriptivos, según los cuales los niños de esta franja etaria utilizan dispositivos tecnológicos en menor proporción. Un segundo grupo de participantes se caracterizó por un uso moderado de tecnologías y se asoció a niños de entre 4 y 5 años, aunque no se asoció a algún nivel educativo en particular por parte de los adultos. En contraposición al primer grupo, el tercero se caracterizó por utilizar diariamente dispositivos tecnológicos y los adultos expresaron una posición positiva sobre dicho uso. Este grupo no apareció asociado a alguna edad en particular de los niños, pero se asoció a un nivel educativo secundario por parte de los padres.

Así, el análisis factorial y la construcción de estos tres perfiles evidenciaron que, tal como en otros estudios (Brito, 2018; Lauricella et al., 2015), la percepción y actitud de los adultos se asocia al uso que tanto ellos como sus niños hacen de los dispositivos tecnológicos. Además, aquí encontamos que el uso de tecnologías por parte de niños también se asocia a su edad y al nivel educativo de los adultos.

En suma, estos resultados muestran que, a pesar de las clásicas recomendaciones sobre evitar o limitar el uso de pantallas (AAP, 2016; OMS, 2019; SAP, 2017), los dispo-
sitivos tecnológicos están fuertemente presentes en la vida cotidiana de los niños.
Consideraciones finales

El mundo simbólico se ha expandido enormemente con el advenimiento de las TIC y su integración a diversas esferas de nuestra vida cotidiana. Las imágenes digitales e interactivas presentan una serie de características que las distinguen por completo de cualquier otro tipo de símbolo, lo que da lugar a formas de interacción absolutamente novedosas entre las personas y los sistemas simbólicos. Entre estas características, se destacan la posibilidad de proyectar en una imagen bidimensional la realidad de modo tridimensional y la incorporación del sentido del tacto como forma de interacción con la imagen. Así, estas imágenes proporcionan respuestas instantáneas y acordes a la naturaleza de las intervenciones del usuario.

El presente libro nació de las controversias e interrogantes actuales en torno a la comprensión, uso e interacción con estas herramientas a edades tempranas. Como suele suceder, la construcción de conocimiento científico va un paso atrás de los vertiginosos desarrollos tecnológicos y su implementación socio-educativa. Así, al momento de comenzar con la investigación aquí presentada, no resultaba claro si la manipulación de la pantalla favorecía o dificultaba el acceso a la comprensión simbólica infantil de las imágenes proyectadas, como tampoco qué papel ocupaba la guía adulta. Asimismo, si bien se encontraba evidencia sobre la interacción materno-infantil mediada por pantallas en situaciones de lectura de cuentos, se contaba con muy pocas investigaciones que analizaran la interacción en otro tipo de actividades, y en el contexto natural de los hogares. Además, si bien a nivel internacional se cuenta con suficiente evidencia que documenta el creciente uso
de tecnologías en los hogares, en la Argentina resultaba escasa la información al respecto.

En este marco, el objetivo general de la investigación, cuyos aportes se presentan en este libro, fue investigar el acceso a la comprensión simbólica y utilización de una imagen digital, tridimensional (3D) e interactiva presentada en una tablet por parte de niños pequeños. Posicionadas desde la perspectiva teórico-metodológica inaugurada con Vygotsky (1991a, 1991b; 1991c), el empleo de diversas técnicas de recolección y análisis de la información en nuestra investigación tuvo el propósito de abordar el fenómeno en su complejidad, avanzando desde una descripción fenomenológica hacia una explicación que dé cuenta del cambio y la génesis del problema abordado. Destacamos así que la calidad de una investigación no está dada por la fidelidad ciega a un método o técnica en particular, sino por la sensibilidad del investigador para crear, adaptar y emplear diversos procedimientos que permitan abordar las preguntas y objetivos de investigación en su singularidad y complejidad (Marradi, 2007a). Asimismo, nuestro énfasis en proponer actividades familiares y en contextos cotidianos para los niños proporcionó a la investigación una alta validez ecológica, que permite interpretar los resultados a la luz del contexto social en que se desarrollan.

En los tres primeros estudios, investigamos evolutivamente en niños de 30 y 36 meses el acceso a la comprensión simbólica de una imagen digital, tridimensional (3D) e interactiva, presentada en una tablet; indagamos el impacto de la instrucción del adulto y de la manipulación previa de la imagen en el acceso a su comprensión simbólica, y comparamos el acceso a la comprensión simbólica en función de la edad, instrucción recibida y manipulación previa de la imagen. Las edades de los niños fueron seleccionadas por abarcar un período crítico en el acceso
a la comprensión de diversos objetos simbólicos (Peralta y Salsa, 2003b).

En estos estudios, adaptamos la clásica tarea de búsqueda ideada por DeLoache (1987). Destacamos el diseño de una aplicación (Unity 3D) instalada en una tablet de 10”, muy valiosa en varios sentidos. Este desarrollo técnico nos permitió adaptar un procedimiento con una sólida base teórica y empírica (DeLoache, 1987) a los interrogantes actuales en torno a la comprensión y uso simbólico de imágenes digitales, y así comparar nuestros resultados con los de aquellas investigaciones que emplearon procedimientos similares en el estudio de la comprensión infantil de maquetas, fotos y videos (DeLoache y Burns, 1994; Troseth y DeLoache, 1998). Además, la programación de la app permite realizar actualizaciones, modificar y/o incluir variables de interés, por lo que puede ser empleada en futuras investigaciones.

En su conjunto, los resultados muestran que la mayoría de los niños comprende la imagen digital, 3D e interactiva presentada en la tablet a los 36 meses cuando recibe instrucción, siempre y cuando no manipulen la imagen previamente. La manipulación previa de la imagen impactó negativamente en su comprensión como símbolo, independientemente de la instrucción recibida. Esto último constituye un resultado interesante, dado que el desempeño de los niños en este tipo de tarea suele ser muy sensible a la instrucción adulta. Sin embargo, cuando los niños manipulaban previamente la imagen, su desempeño era similar hayan recibido o no instrucción por parte de la investigadora. Así, la manipulación de la imagen a modo de juego o de exploración acentúa sus propiedades como objeto concreto y atractivo en sí mismo e interfiere en su comprensión simbólica.
Respecto a los niños de 30 meses, en su mayoría no accedieron a la comprensión simbólica de la imagen, aun recibiendo instrucción y sin manipular la imagen previa-mente. A su vez, su desempeño disminuyó significativa-mente cuando la manipularon, al aumentar su impacto como objeto concreto. De manera análoga a lo que suce- de con una maqueta, a los 30 meses los niños presentan mayores dificultades para mantener activas y de manera simultánea la representación del objeto y la de aquello que representa, lo que evidencia una menor flexibilidad cognitiva que los niños mayores. Así, para estos niños, la imagen presentada en la *tablet* resulta más interesante por lo que es que por lo que evoca. Esta interpretación se vio reforzada al analizar sus dificultades para resolver la tarea. A los 30 meses, algunos niños indicaban que el personaje se encontraba en la *tablet* y de ninguna manera en la habitación, lo que expresa su dificultad para comprender la naturaleza doble de la imagen y, por consiguiente, su función simbólica.

En el estudio 4, desde un enfoque microgenético nos propusimos explorar, describir y analizar la interacción entre adultos y niños con un juego digital e interactivo que implica la solución de un problema, específicamen-te el armado de un rompecabezas. Analizamos el tipo de instrucción que los adultos brindaban a sus niños para realizar la tarea y las intervenciones de los niños, considerando tanto sus emisiones verbales como las manipu-laciones de la imagen. Además indagamos la tenencia y hábitos de uso de dispositivos tecnológicos en los hogares de los participantes y analizamos, desde una perspectiva multidimensional, las variaciones de la interacción según tenencia y hábitos de uso de dispositivos tecnológicos en el hogar. Para este estudio, seleccionamos una aplicación disponible en el mercado por ser adecuada para la edad
y presentar figuras familiares para los niños, y las observaciones tuvieron lugar en los hogares de los participantes. Cabe destacar que invitamos a participar a madres y padres. Sin embargo, accedió a participar un solo papá. Al contar con un único caso no fue posible realizar una comparación de estilos de interacción materno y paterno ni efectuar otro tipo de análisis. Con todo, la inclusión de este caso en la muestra obedece al propósito de evidenciar la necesidad de que investigaciones sobre diferentes aspectos del desarrollo infantil incluyan no solo a las madres, sino también a otras personas significativas para el niño. Apostando a la construcción de conocimiento desde una perspectiva crítica, advertimos los riesgos de no incluir varones en este tipo de estudios, al reproducir estereotipos de género que delegan el cuidado del hogar y de los niños exclusivamente a las mujeres.

Entre los resultados más interesantes, destacamos que, a diferencia de otros estudios (Gariboldi y Salsa, 2018; Jauck et al., 2015; Mascareño et al., 2017; Peralta, 1997), los niños intervinieron en mayor proporción que los adultos, tratándose en gran medida de intervenciones espontáneas. Esto respondió probablemente a las propiedades interactivas de la imagen, que generaron gran interés y motivación por la tarea. Los adultos hablaron permanentemente a los niños y casi la mitad de estas verbalizaciones estuvieron acompañadas de manipulaciones de la imagen, y brindaron así mayor orientación y pistas. Otro hallazgo interesante fue que las intervenciones, tanto de los adultos como de los niños, se diferenciaron en función de su experiencia previa en el uso de tecnologías. Así, aquellas intervenciones de los adultos que implicaban una baja exigencia y demanda cognitiva fueron más frecuentes con aquellos niños que tenían menor experiencia en el uso de tecnologías. Estos niños, por su parte, exhibieron más
intervenciones de baja complejidad. Con aquellos niños que tenían mayor experiencia con tecnologías no encontramos diferencias significativas en las intervenciones de los adultos y los niños ubicaron con mayor frecuencia las piezas del rompecabezas. Se observa así que los adultos adecuaron su ayuda al nivel de experticia percibida en sus niños, en este caso, dada por su experiencia previa con la herramienta propuesta. Estos resultados, su comparación con estudios sobre interacción materno-infantil en el armado de un rompecabezas de cartón (Peralta, 1997) y su consideración conjunta con investigaciones sobre situaciones de lectura con dispositivos tecnológicos (Chiong et al., 2012; Parish-Morris et al., 2013) sugieren que el soporte que media la actividad modifica la estructura de la interacción, y que esto a su vez está ligado a la experiencia previa de los participantes con la herramienta empleada.

En el estudio 5, nos propusimos indagar la tenencia, hábitos y percepciones de uso de dispositivos tecnológicos en padres, madres o adultos responsables de niños de hasta 8 años. Distribuimos un cuestionario que denominamos “Tecnologías en los hogares y su uso por parte de niños (0-8 años) en Argentina” (Sartori et al., 2017), que consiste en la adaptación de un instrumento previamente utilizado en Estados Unidos (Rideout, 2013). Si bien obtuvimos información de diversas provincias del país, la mayoría de los participantes vivía en Santa Fe, Buenos Aires y Entre Ríos. El análisis descriptivo nos mostró que, más allá de ciertos casos, los dispositivos tecnológicos están fuertemente presentes en la vida de los niños y su uso es mayormente con fines de entretenimiento, no educativos. A partir del análisis multidimensional de datos, encontramos tres perfiles de participantes diferenciados por sus hábitos y percepción de uso de tecnologías, los cuales denominamos aceptación y uso bajo, aceptación y uso moderado y
aceptación y uso alto. Así, los resultados obtenidos, junto a los de otras investigaciones (Ahearne et al., 2015; Lauricella et al., 2015; Rideout, 2017; Waisman et al., 2018), reflejan la discordancia entre las clásicas recomendaciones sobre evitar y limitar el tiempo de pantallas (AAP, 2016; OMS, 2019; SAP, 2017) y el uso real.

Tomando los resultados de los cinco estudios realizados como punto de partida, en futuras investigaciones proponemos estudiar evolutivamente el impacto de la interactividad de la imagen presentada en la tablet en el acceso a su comprensión simbólica en condiciones en que los niños no reciban instrucción en la tarea. Si bien en los primeros estudios indagamos el impacto de la manipulación previa de la imagen en su posterior utilización como símbolo, no estudiamos el impacto de la interacción del niño con la imagen digital en la resolución de la tarea. Considerando que los niños utilizan las pantallas táctiles generalmente en soledad y su uso implica que el dispositivo sea manipulado, este estudio nos permitirá seguir precisando diferentes aspectos involucrados en la comprensión infantil de estas herramientas. Además, proponemos incluir el estudio de factores individuales como la comprensión y producción del lenguaje y la flexibilidad cognitiva del niño, a fin de complementar y correlacionar con la información obtenida. En relación con el estudio 4, sería interesante una comparación directa del armado de los mismos rompecabezas presentados en la tablet con su versión analógica. Esta comparación permitirá obtener información más precisa sobre el impacto del tipo de soporte en el estilo de interacción. También proponemos distribuir nuevamente el cuestionario utilizado en el estudio 5, sobre el uso de tecnologías. El trabajo de campo fue realizado previamente a la pandemia, por lo que resulta relevante contar con información actualizada sobre los hábitos y percepciones...
de uso de tecnologías en los hogares, bajo la hipótesis de que se vieron modificados por las particularidades del contexto actual. Por último, cabe destacar que de la presente investigación se desprende un proyecto orientado al estudio del uso de imágenes digitales, 3D e interactivas como herramientas simbólicas en niños con condición del espectro autista. Si bien en los últimos años numerosos estudios han abordado el tema (Agius y Vance, 2016; Allen et al., 2015; 2016; Flores et al., 2012; Lorah et al., 2015; Wainwright et al., 2020) aún no se cuenta con resultados concluyentes respecto a las potencialidades de los dispositivos tecnológicos por sobre medios tradicionales como herramientas de mediación al servicio de su inclusión socio-educativa.

La conclusión que se desprende de este libro es que la peculiaridad de las pantallas táctiles, dada por la interactividad y tridimensionalidad de la imagen y del soporte en que se presenta, impacta en la comprensión y uso infantil como medio simbólico. Por tanto, este trabajo no solo contribuye con evidencia empírica a una línea de investigación de larga trayectoria sobre el desarrollo simbólico infantil, sino que también tiene implicancias educativas en lo que respecta al uso de dispositivos tecnológicos como recursos didácticos a edades tempranas. Para aprender de una imagen es preciso comprenderla. Los estudios realizados indican que los niños comprenden que una imagen digital, 3D e interactiva refiere a la realidad a los 36 meses siempre y cuando un adulto guíe explícitamente su utilización y no se acentúen las propiedades de la imagen como objeto concreto en sí mismo o como un juego.

Para finalizar, cabe destacar que los dispositivos tecnológicos son uno de los bienes culturales de nuestra sociedad, y forman parte del legado que reciben las nuevas generaciones. El trabajo con estos constituye un factor de
inclusión que forma parte del proceso de alfabetización del sujeto. Asimismo, la pandemia por COVID-19 implicó el uso de dispositivos tecnológicos como medio privilegiado para sostener procesos de enseñanza, aprendizaje y socialización. Por tanto, continuar planteando el debate en términos antagónicos “a favor” o “en contra” de su implementación hoy resulta obsoleto, y las recomendaciones sobre evitar su uso, muy poco realistas. En este sentido, se presenta el desafío de avanzar en la construcción de conocimiento situado en nuestro país y en el desarrollo de proyectos de difusión e intervención que promuevan prácticas educativas basadas en evidencia científica, que procuren que familias y educadores cuenten con conocimientos certeros sobre sus potencialidades educativas y los efectos negativos de su uso excesivo, fundamentalmente al momento de decidir sobre su implementación a edades tempranas.
Bibliografía

Barth, H., La Mont, K., Lipton, J. y Spelke, E. S. (2005). Abstract number and arithmetic in preschool children. *Proceedings of the national academy of sciences, 102*(39), 14116-14121.

Gariboldi, M. B. y Salsa, A. M. (2018). Conocimientos sobre los aspectos formales y referenciales del dibujo, la escritura y los numerales en la lectura compar-
tida entre madres y niños pequeños. *Interdisciplina-\nnia*, 35(2), 477-494.

Maita, M. D. R., Mareovich, F. y Peralta, O. (2014). Intentional Teaching Facilitates Young Children’s Com-

preschool children play analogue and digital Memory games. *Early Years*, 1-16.

Raynaudo, G., Sartori, M. y Peralta, O. (Junio de 2017). *Tecnologías en los hogares y su uso por parte de niños (0-8 años) en Argentina.* XXXVI Congreso Interamericano de Psicología, Mérida, México.

Sartori, M., Raynaudo, G., Peralta, N. y Peralta, O. (Agosto de 2017). *Utilización de dispositivos tecnológicos por parte de niños de entre 0 y 8 años y percepción de los padres y/o adultos responsables*. XVI Reunión
Nacional y V Encuentro Internacional de la Asociación Argentina de Ciencias del Comportamiento, Facultad de Psicología, UNSL. San Luis, Argentina.

Sociedad Argentina de Pediatría. Subcomisión de Tecnologías de Información y Comunicación (2017). Bebés,

